Главная > Болезни > Закономерности движения крови в артериальном и венозном русле

Закономерности движения крови в артериальном и венозном русле

  • Физиология
  • История физиологии
  • Методы физиологии

Кровообращение — это движение крови по сосудистой системе, обеспечивающее газообмен между организмом и внешней средой, обмен веществ между органами и тканями и гуморальную регуляцию различных функций организма.

Система кровообращения включает сердце и кровеносные сосуды — аорту, артерии, артериолы, капилляры, венулы, вены и лимфатические сосуды. Кровь движется по сосудам благодаря сокращению сердечной мышцы.

Кровообращение совершается по замкнутой системе, состоящей из малого и большого кругов:

  • Большой круг кровообращения обеспечивает все органы и ткани кровью с содержащимися в ней питательными веществами.
  • Малый, или легочный, круг кровообращения предназначен для обогащения крови кислородом.

Круги кровообращения впервые были описаны английским ученым Уильямом Гарвеем в 1628 г. в труде «Анатомические исследования о движении сердца и сосудов».

Малый круг кровообращения начинается из правого желудочка, при сокращении которого венозная кровь попадает в легочный ствол и, протекая через легкие, отдает диоксид углерода и насыщается кислородом. Обогащенная кислородом кровь из легких по легочным венам поступает в левое предсердие, где заканчивается малый круг.

Большой круг кровообращения начинается из левого желудочка, при сокращении которого кровь, обогащенная кислородом, нагнетается в аорту, артерии, артериолы и капилляры всех органов и тканей, а оттуда по венулам и венам притекает в правое предсердие, где и заканчивается большой круг.

Самым крупным сосудом большого круга кровообращения является аорта, которая выходит из левого желудочка сердца. Аорта образует дугу, от которой ответвляются артерии, несущие кровь к голове (сонные артерии) и к верхним конечностям (позвоночные артерии). Аорта проходит вниз вдоль позвоночника, где от нее отходят ветви, несущие кровь к органам брюшной полости, к мышцам туловища и нижним конечностям.

Артериальная кровь, богатая кислородом, проходит по всему телу, доставляя клеткам органов и тканей необходимые для их деятельности питательные вещества и кислород, и в капиллярной системе превращается в кровь венозную. Венозная кровь, насыщенная углекислым газом и продуктами клеточного обмена, возвращается в сердце и из него поступает в легкие для газообмена. Наиболее крупными венами большого круга кровообращения являются верхняя и нижняя полые вены, впадающие в правое предсердие.

Рис. Схема малого и большого кругов кровообращения

Следует обратить внимание, как в большой круг кровообращения включены системы кровообращения печени и почек. Вся кровь из капилляров и вен желудка, кишечника, поджелудочной железы и селезенки поступает в воротную вену и проходит через печень. В печени воротная вена разветвляется на мелкие вены и капилляры, которые затем вновь соединяются в общий ствол печеночной вены, впадающей в нижнюю полую вену. Вся кровь органов брюшной полости до поступления в большой круг кровообращения протекает через две капиллярные сети: капилляры этих органов и капилляры печени. Воротная система печени играет большую роль. Она обеспечивает обезвреживание ядовитых веществ, которые образуются в толстом кишечнике при расщеплении невсосавшихся в тонком кишечнике аминокислот и всасываются слизистой толстой кишки в кровь. Печень, подобно всем остальным органам, получает и артериальную кровь через печеночную артерию, отходящую от брюшной артерии.

В почках также имеются две капиллярные сети: капиллярная сеть есть в каждом мальпигиевом клубочке, затем эти капилляры соединяются в артериальный сосуд, который вновь распадается на капилляры, оплетающие извитые канальцы.

Особенностью кровообращения в печени и почках является замедление тока крови, обусловливающейся функцией этих органов.

Таблица 1. Отличие тока крови в большом и малом кругах кровообращения

Ток крови в организме

Большой круг кровообращения

Малый круг кровообращения

В каком отделе сердца начинается круг?

В каком отделе сердца заканчивается круг?

В капиллярах, находящихся в органах грудной и брюшной полостей, головном мозге, верхних и нижних конечностях

В капиллярах, находящихся в альвеолах легких

Какая кровь движется по артериям?

Какая кровь движется по венам?

Время движения крови по кругу

Снабжение органов и тканей кислородом и перенос углекислого газа

Насыщение крови кислородом и удаление из организма углекислого газа

Время кругооборота крови — время однократного прохождения частицы крови по большому и малому кругам сосудистой системы. Подробнее следующем разделе статьи.

Гемодинамика — это раздел физиологии, изучающий закономерности и механизмы движения крови по сосудам организма человека. При ее изучении используется терминология и учитываются законы гидродинамики — науки о движении жидкостей.

Скорость, с которой движется кровь но сосудам, зависит от двух факторов:

  • от разности давления крови в начале и конце сосуда;
  • от сопротивления, которое встречает жидкость на своем пути.

Разность давлений способствует движению жидкости: чем она больше, тем интенсивнее это движение. Сопротивление в сосудистой системе, уменьшающее скорость движения крови, зависит от ряда факторов:

  • длины сосуда и его радиуса (чем больше длина и меньше радиус, тем больше сопротивление);
  • вязкости крови (она в 5 раз больше вязкости воды);
  • трения частиц крови о стенки сосудов и между собой.

Скорость кровотока в сосудах осуществляется по законам гемодинамики, общим с законами гидродинамики. Скорость кровотока характеризуется тремя показателями: объемной скоростью кровотока, линейной скоростью кровотока и временем кругооборота крови.

Объемная скорость кровотока — количество крови, протекающее через поперечное сечение всех сосудов данного калибра за единицу времени.

Линейная скорость кровотока — скорость движения отдельной частицы крови вдоль сосуда за единицу времени. В центре сосуда линейная скорость максимальна, а около стенки сосуда минимальна вследствие повышенного трения.

Время кругооборота крови — время, в течение которого кровь проходит по большому и малому кругам кровообращения.В норме составляет 17-25 с. На прохождение через малый круг затрачивается около 1/5, а на прохождение через большой — 4/5 этого времени

Движущей силой кровотока но системе сосудов каждого из кругов кровообращения является разность давления крови (ΔР) в начальном участке артериального русла (аорта для большого круга) и конечном участке венозного русла (полые вены и правое предсердие). Разность давления крови (ΔР) в начале сосуда (Р1) и в конце его (Р2) является движущей силой тока крови через любой сосуд кровеносной системы. Сила градиента давления крови расходуется на преодоление сопротивления кровотоку (R) в системе сосудов и в каждом отдельном сосуде. Чем выше градиент давления крови в кругу кровообращения или в отдельном сосуде, тем больше в них объемный кровоток.

Важнейшим показателем движения крови по сосудам является объемная скорость кровотока, или объемный кровоток (Q), под которым понимают объем крови, протекающей через суммарное поперечное сечение сосудистого русла или сечение отдельного сосуда в единицу времени. Объемную скорость кровотока выражают в литрах на минуту (л/мин) или миллилитрах на минуту (мл/мин). Для оценки объемного кровотока через аорту или суммарное поперечное сечение любого другого уровня сосудов большого круга кровообращения используют понятие объемный системный кровоток. Поскольку за единицу времени (минуту) через аорту и другие сосуды большого круга кровообращения протекает весь объем крови, выброшенной левым желудочком за это время, синонимом понятия системный объемный кровоток является понятие минутный объем кровотока (МОК). МОК взрослого человека в покое составляет 4-5 л/мин.

Различают также объемный кровоток в органе. В этом случае имеют в виду суммарный кровоток, протекающий за единицу времени через все приносящие артериальные или выносящие венозные сосуды органа.

Таким образом, объемный кровоток Q = (P1 — Р2) / R.

В этой формуле выражена суть основного закона гемодинамики, утверждающего, что количество крови, протекающей через суммарное поперечное сечение сосудистой системы или отдельного сосуда в единицу времени, прямо пропорционально разности давления крови в начале и в конце сосудистой системы (или сосуда) и обратно пропорционально сопротивлению току крови.

Суммарный (системный) минутный кровоток в большом круге рассчитывается с учетом величин среднего гидродинамического давления крови в начале аорты P1, и в устье полых вен Р2. Поскольку в этом участке вен давление крови близко к , то в выражение для расчета Q или МОК подставляется значение Р, равное среднему гидродинамическому артериальному давлению крови в начале аорты: Q (МОК) =P/R.

Одно из следствий основного закона гемодинамики — движущая сила тока крови в сосудистой системе — обусловлено давлением крови, создаваемым работой сердца. Подтверждением решающего значения величины давления крови для кровотока является пульсирующий характер тока крови на протяжении сердечного цикла. Во время систолы сердца, когда давление крови достигает максимального уровня, кровоток увеличивается, а во время диастолы, когда давление крови минимально, кровоток ослабляется.

По мере продвижения крови по сосудам от аорты к венам давление крови уменьшается и скорость его уменьшения пропорциональна сопротивлению кровотоку в сосудах. Особенно быстро снижается давление в артериолах и капиллярах, так как они обладают большим сопротивлением кровотоку, имея малый радиус, большую суммарную длину и многочисленные ветвления, создающие дополнительное препятствие кровотоку.

Сопротивление кровотоку, создаваемое во всем сосудистом русле большого круга кровообращения, называют общим периферическим сопротивлением (ОПС). Следовательно, в формуле для расчета объемного кровотока символ R можно заменить его аналогом — ОПС:

Из этого выражения выводится ряд важных следствий, необходимых для понимания процессов кровообращения в организме, оценки результатов измерения кровяного давления и его отклонений. Факторы, влияющие на сопротивление сосуда, для тока жидкости, описываются законом Пуазейля, в соответствии с которым

где R — сопротивление; L — длина сосуда; η — вязкость крови; Π — число 3,14; r — радиус сосуда.

Из приведенного выражения вытекает, что поскольку числа 8 и Π являются постоянными, L у взрослого человека изменяется мало, то величина периферического сопротивления кровотоку определяется изменяющимися значениями радиуса сосудов r и вязкости крови η).

Уже упоминалось о том, что радиус сосудов мышечного типа может быстро изменяться и оказывать существенное влияние на величину сопротивления кровотоку (отсюда их название — резистивные сосуды) и величину кровотока через органы и ткани. Поскольку сопротивление зависит от величины радиуса в 4-й степени, то даже небольшие колебания радиуса сосудов сильно сказываются на величинах сопротивления току крови и кровотока. Так, например, если радиус сосуда уменьшится с 2 до 1 мм, то сопротивление его увеличится в 16 раз и при неизменном градиенте давления кровоток в этом сосуде также уменьшится в 16 раз. Обратные изменения сопротивления будут наблюдаться при увеличении радиуса сосуда в 2 раза. При неизменном среднем гемодинамическом давлении кровоток в одном органе может увеличиваться, в другом — уменьшаться в зависимости от сокращения или расслабления гладкой мускулатуры приносящих артериальных сосудов и вен этого органа.

Вязкость крови зависит от содержания в крови числа эритроцитов (гематокрита), белка, липопротеинов в плазме крови, а также от агрегатного состояния крови. В нормальных условиях вязкость крови не изменяется столь быстро, как просвет сосудов. После кровопотери, при эритропении, гипопротеинемии вязкость крови понижается. При значительном эритроцитозе, лейкозах, повышенной агрегации эритроцитов и гиперкоагуляции вязкость крови способна существенно возрастать, что влечет за собой повышение сопротивления кровотоку, увеличение нагрузки на миокард и может сопровождаться нарушением кровотока в сосудах микроциркуляторного русла.

В устоявшемся режиме кровообращения объем крови, изгнанный левым желудочком и протекающий через поперечное сечение аорты, равен объему крови, протекающей через суммарное поперечное сечение сосудов любого другого участка большого круга кровообращения. Этот объем крови возвращается в правое предсердие и поступает в правый желудочек. Из него кровь изгоняется в малый круг кровообращения и затем через легочные вены возвращается в левое сердце. Поскольку МОК левого и правого желудочков одинаковы, а большой и малый круги кровообращения соединены последовательно, то объемная скорость кровотока в сосудистой системе остается одинаковой.

Однако во время изменения условий кровотока, например при переходе из горизонтального в вертикальное положение, когда сила тяжести вызывает временное накопление крови в венах нижней части туловища и ног, на короткое время МОК левого и правого желудочков могут стать различными. Вскоре внутрисердечные и экстракардиальные механизмы регуляции работы сердца выравнивают объемы кровотока через малый и большой круги кровообращения.

При резком уменьшении венозного возврата крови к сердцу, вызывающем уменьшение ударного объема, может понизиться артериальное давление крови. При выраженном его снижении может уменьшиться приток крови к головному мозгу. Этим объясняется ощущение головокружения, которое может наступить при резком переходе человека из горизонтального в вертикальное положение.

Общий объем крови в сосудистой системе является важным гомеостатическим показателем. Средняя величина его составляет для женщин 6-7%, для мужчин 7-8% от массы тела и находится в пределах 4-6 л; 80-85% крови из этого объема — в сосудах большого круга кровообращения, около 10% — в сосудах малого круга кровообращения и около 7% — в полостях сердца.

Больше всего крови содержится в венах (около 75%) — это указывает на их роль в депонировании крови как в большом, так и в малом кругу кровообращения.

Движение крови в сосудах характеризуется не только объемной, но и линейной скоростью кровотока. Под ней понимают расстояние, на которое перемещается частичка крови за единицу времени.

Между объемной и линейной скоростью кровотока существует взаимосвязь, описываемая следующим выражением:

где V — линейная скорость кровотока, мм/с, см/с; Q объемная скорость кровотока; П — число, равное 3,14; r — радиус сосуда. Величина Пr 2 отражает площадь поперечного сечения сосуда.

Рис. 1. Изменения давления крови, линейной скорости кровотока и площади поперечного сечения в различных участках сосудистой системы

Рис. 2. Гидродинамические характеристики сосудистого русла

Из выражения зависимости величины линейной скорости от объемной в сосудах кровеносной системы видно, что линейная скорость кровотока (рис. 1.) пропорциональна объемному кровотоку через сосуд(ы) и обратно пропорциональна площади поперечного сечения этого сосуда(ов). Например, в аорте, имеющей наименьшую площадь поперечного сечения в большом круге кровообращения (3-4 см 2 ), линейная скорость движения крови наибольшая и составляет в покое около 20- 30 см/с. При физической нагрузке она может возрасти в 4-5 раз.

По направлению к капиллярам суммарный поперечный просвет сосудов увеличивается и, следовательно, линейная скорость кровотока в артериях и артериолах уменьшается. В капиллярных сосудах, суммарная площадь поперечного сечения которых больше, чем в любом другом отделе сосудов большого круга (в 500-600 раз больше поперечного сечения аорты), линейная скорость кровотока становится минимальной (менее 1 мм/с). Медленный ток крови в капиллярах создает наилучшие условия для протекания обменных процессов между кровью и тканями. В венах линейная скорость кровотока увеличивается в связи с уменьшением площади их суммарного поперечного сечения по мере приближения к сердцу. В устье полых вен она составляет 10-20 см/с, а при нагрузках возрастает до 50 см/с.

Линейная скорость движения плазмы и форменных элементов крови зависит не только от типа сосуда, но и от их расположения в потоке крови. Различают ламинарный тип течения крови, при котором ноток крови можно условно разделить на слои. При этом линейная скорость движения слоев крови (преимущественно плазмы), близких или прилежащих к стенке сосуда, — наименьшая, а слоев в центре потока — наибольшая. Между эндотелием сосудов и пристеночными слоями крови возникают силы трения, создающие на эндотелии сосудов сдвиговые напряжения. Эти напряжения играют роль в выработке эндотелием сосудоактивных факторов, регулирующих просвет сосудов и скорость кровотока.

Эритроциты в сосудах (за исключением капилляров) располагаются преимущественно в центральной части потока крови и движутся в нем с относительно высокой скоростью. Лейкоциты, наоборот, располагаются преимущественно в пристеночных слоях потока крови и совершают катящиеся движения с небольшой скоростью. Это позволяет им связываться с рецепторами адгезии в местах механического или воспалительного повреждения эндотелия, прилипать к стенке сосуда и мигрировать в ткани для выполнения защитных функций.

При существенном увеличении линейной скорости движения крови в суженной части сосудов, в местах отхождения от сосуда его ветвей ламинарный характер движения крови может сменяться на турбулентный. При этом в потоке крови может нарушиться послойность перемещения ее частиц, между стенкой сосуда и кровью могут возникать большие силы трения и сдвиговых напряжений, чем при ламинарном движении. Развиваются вихревые потоки крови, возрастает вероятность повреждения эндотелия и отложения холестерина и других веществ в интиму стенки сосуда. Это способно привести к механическому нарушению структуры сосудистой стенки и инициированию развития пристеночных тромбов.

Читайте также:  Гдз лабораторная работа микроскопическое строение крови человека и лягушки

Время полного кругооборота крови, т.е. возврата частицы крови в левый желудочек после ее выброса и прохождения через большой и малый круги кровообращения, составляет в покос 20-25 с, или примерно через 27 систол желудочков сердца. Приблизительно четверть этого времени затрачивается на перемещение крови по сосудам малого круга и три четверти — по сосудам большого круга кровообращения.

По материалам www.grandars.ru

Закономерности движения крови по сосудам основаны на законах гидродинамики. В соответствии с этими законами движение крови по сосудам определяется двумя силами: разностью давления в начале и конце сосуда и гидравлическим сопротивлением, которое препятствует току крови. Отношение разности давления к сопротивлению определяет объемную скорость тока жидкости, протекающей по сосудам в единицу времени. Эта зависимость носит название основного гидродинамического закона: количество крови, протекающей в единицу времени через крове­носную систему, тем больше, чем больше разность давления в ее артери­альном и венозном концах и чем меньше сопротивление току крови. Одна­ко физические законы в живом организме, где все явления, в том числе и движение крови, происходят в сложных биологических условиях, приоб­ретают своеобразный характер. Это убедительно видно на примере бес­прерывности тока крови как в фазе систолы, так и диастолы. Кровь дви­жется по сосудам во время расслабления желудочков за счет потенциаль­ной энергии.

Сердце при сокращении растягивает эластические и мышечные эле­менты стенок магистральных сосудов, в которых накапливается запас энергии сердца, затраченной на их растяжение. Во время диастолы растя­нутые эластические стенки артерий спадаются и накопленная в них потен­циальная энергия сердца движет кровь. Растяжение крупных артерий об­легчается благодаря большому сопротивлению, которое оказывают резистивные сосуды. Наибольшее сопротивление току крови наблюдается в артериолах. Поэтому кровь, выбрасываемая сердцем во время систолы, не успевает дойти до мелких кровеносных сосудов. В результате этого созда­ется временный избыток крови в крупных артериальных сосудах. Таким образом, сердце обеспечивает движение крови в артериях и во время сис­толы, и во время диастолы. Значение эластичности сосудистых стенок со­стоит в том, что они обеспечивают переход прерывистого, пульсирующего тока крови в постоянный. Это важное свойство сосудистой стенки обу­словливает сглаживание резких колебаний давления, что способствует бесперебойному снабжению органов и тканей.

Время, за которое частица крови однократно проходит большой и малый круги кровообращения, называется временем кругооборота крови. В норме у человека в покое оно составляет 20-25 с, из этого времени 1/5 (4-5 с) приходится на малый круг и 4/5 (16-20 с) — на большой. При физи­ческой работе время кругооборота у человека достигает 10-12 с. Линейная скорость кровотока — это путь, пройденный в единицу времени (в секунду) каждой частицей крови. Линейная скорость кровотока обратно пропор­циональна суммарной площади поперечного сечения сосудов. В состоянии покоя линейная скорость кровотока составляет: в аорте — 0,5 м/с, в артери­ях — 0,25 м/с, в капиллярах — 0,5 мм/с (т.е. в 1000 раз меньше, чем в аорте), в полых венах — 0,2 м/с, в периферических венах среднего калибра — от 6 до 14 см/с.

Дата добавления: 2015-09-14 ; просмотров: 1269 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

По материалам helpiks.org

99. Основные законы гемодинамики и использование их для объяснения движения крови по сосудам. Функциональная структура различных отделов сосудистого русла.

Гемодинамика — раздел физиологии кровообращения, использующий законы гидродинамики (физические явления движения жидкости в замкнутых сосудах) для исследования причин, условий и механизмов движения крови в ССС. Гемодинамика определяется двумя силами: давлением, которое оказывает влияние на жидкость, и сопротивлением, которое она испытывает при трении о стенки сосудов и вихревых движениях.

Силой, создающей давление в сосудистой системе, является сердце. У человека среднего возраста при каждом сокращении сердца в сосудистую систему выталкивается 60−70 мл крови (систолический объем) или 4−5 л/мин (минутный объем). Движущей силой крови служат разность давлений, возникающая в начале и конце трубки.

Почти во всех отделах сосудистой системы кровоток носит ламинарный характер — кровь движется отдельными слоями параллельно оси сосуда. При этом слой, прилежащий к стенке сосуда, остается практически неподвижным, по этому слою скользит второй, а по нему, в свою очередь, третий и т.д. Форменные элементы крови составляют центральный, осевой поток, плазма движется ближе к стенке сосуда. Следовательно, чем меньше диаметр сосуда, тем ближе располагаются центральные слои к стенке и больше тормозится скорость их движения из-за вязкого взаимодействия со стенкой. В целом это означает, что в мелких сосудах скорость кровотока ниже, чем в крупных. В правильности этого положения легко убедиться сопоставив скорости кровотока в разных участках сосудистого русла. В аорте она составляет 40 см/с, в артериях — от 40 до 10, артериолах — 10 — 0,1, капиллярах — меньше 0,1, венулах — меньше 0,3, венах — 0,3 — 5,0, полой вене — 5 — 20 см/с (К. Шмидт-Ниельсон, 1982).

Наряду с ламинарным в сосудистой системе существует турбулентное движение с характерным завихрением крови. Ее частицы перемещаются не только параллельно оси сосуда, как при ламинарном кровотоке, но и перпендикулярно ей. Результатом такого сложного перемещения является значительное увеличение внутреннего трения жидкости. В этом случае объемная скорость тока крови будет уже не пропорциональной градиенту давления, а примерно равной квадратному корню из него. Турбулентное движение обычно возникает в местах разветвлений и сужений артерий, в участках крутых изгибов сосудов.

Кровь представляет собой взвесь форменных элементов в коллоидно-солевом растворе, она обладает определенной вязкостью, не являющейся величиной постоянной. При протекании крови через капилляр, диаметр которого меньше 1 мм, вязкость уменьшается. Последующее уменьшение диаметра капилляра еще более уменьшает вязкость протекающей крови. Этот гемодинамический парадокс объясняется тем, что во время движения крови эритроциты сосредоточиваются в центре потока. Пристеночный же слой состоит из чистой плазмы с гораздо меньшей вязкостью, по которому легко скользят форменные элементы. В итоге улучшаются условия тока крови и происходит снижение перепадов давления, что, в общем, компенсирует увеличение вязкости крови и снижение скорости ее тока в мелких артериях. Переход от ламинарного движения крови к турбулентному сопровождается значительным ростом сопротивления течению крови.

Соотношение между характером течения жидкости в жестких трубках и давлением обычно определяют по формуле Пуазейля. Используя эту формулу, можно вычислить сопротивление R току крови в зависимости от ее вязкости η, длины l и радиуса r сосуда:

Сосудистую систему в целом можно представить в виде последовательно и параллельно соединённых трубок разной длины и диаметра. В случае последовательного соединения общее сопротивление составляет сумму сопротивлений отдельных сосудов: R = R1 + R2 + . + Rn. При параллельном соединении величину сопротивления вычисляют по другой формуле: 1/R = l/R1 + 1/R2 + l/Rn. Учитывая сложность геометрии сосудов целого организма, ее непостоянство, зависящее от открытия и закрытия шунтов, коллатералей, степени сокращения гладких мышц, эластичности стенок, изменения вязкости крови и других причин, в реальных условиях рассчитать величину сосудистого сопротивления трудно. Поэтому его принято определять как частное от деления кровяного давления Р на минутный объем крови Q:

Для всей сосудистой системы организма в целом эта формула применима лишь при том условии, если в конце системы, т.е. в полых венах вблизи места их впадения в сердце, давление будет близким к нулю. Соответственно при необходимости вычисления сопротивления отдельного участка сосудистой системы формула приобретает вид

Значения Р1 и P2 отражают давление в начале и конце определяемого участка.

Основная кинетическая энергия, необходимая для движения крови, сообщается ей сердцем во время систолы. Одна часть этой энергии расходуется на проталкивание крови, другая — превращается в потенциальную энергию растягиваемой во время систолы эластичной стенки аорты, крупных и средних артерий. Их свойства зависят от наличия эластических и коллагеновых волокон, растяжимость которых примерно в шесть раз выше, чем, например, резиновых нитей той же толщины. Во время диастолы энергия стенки аорты и сосудов переходит в кинетическую энергию движения крови.

Кроме эластичности и растяжимости, т.е. пассивных свойств, сосуды обладают еще способностью активно реагировать на изменение в них кровяного давления. При повышении давления гладкие мышцы стенок сокращаются и диаметр сосуда уменьшается. Таким образом, пульсирующий ток крови, создаваемый функцией сердца, благодаря особенностям аорты и крупных сосудов выравнивается и становится относительно непрерывным.

Основными показателями гемодинамики являются объемная скорость, скорость кругооборота крови, давление в разных областях сосудистой системы.

Объемная скорость движения крови характеризует ее количество (в миллиметрах), протекающее через поперечное сечение сосуда за единицу времени (1 мин). Объемная скорость кровотока прямо пропорциональна перепаду давления в начале и конце сосуда и обратно пропорциональна его сопротивлению току крови. В нормальном организме отток крови от сердца соответствует ее притоку к нему. Это означает, что объем крови, протекающей за единицу времени через всю артериальную и всю венозную систему большого и малого круга кровообращения, одинаков.

Линейная скорость движения крови характеризует скорость перемещения ее частиц вдоль сосуда при ламинарном потоке. Она выражается в сантиметрах в секунду и определяется как отношение объемной скорости кровотока Q к площади поперечного сечения сосуда πr2:

Полученная таким образом величина является сугубо средним показателем, так как, согласно законам ламинарного движения, скорость перемещения крови в центре сосуда является максимальной и падает в слоях, прилежащих к сосудистой стенке.

Линейная скорость кровотока различна и в отдельных участках сосудистого русла по ходу сосудистого дерева. Она зависит от общей суммы площади просветов сосудов этого калибра в рассматриваемом участке. Наименьшим поперечным сечением характеризуется аорта, в связи с чем и скорость движения крови в ней самая большая — 50−70 см/с. Наибольшей суммарной площадью поперечного сечения обладают капилляры, у млекопитающих она приблизительно в 800 раз больше площади поперечного сечения аорты. Соответственно и скорость крови здесь около 0,05 см/с. В артериях она составляет 20−40 см/с, в артериолах — 0,5 см/с. В силу того, что при слиянии вен их суммарный просвет уменьшается, линейная скорость кровотока снова возрастает, достигая в полой вене 20 см/с.

Кровь выталкивается отдельными порциями, поэтому кровоток в аорте и артериях пульсирует. При этом его линейная скорость возрастает в фазе систолы и снижается во время диастолы. В капиллярной сети в силу особенностей строения предшествующих ей артерий пульсовые толчки исчезают и линейная скорость кровотока приобретает постоянный характер.

Скорость кругооборота крови отражает время, за которое частица крови проходит большой и малый круг кровообращения. Для определения скорости кругооборота обычно используют введение «метки» с последующим контролем ее появления в соответствующей области. У различных насекомых время кругооборота равно 20−30 мин, у крабов — 37−65 с, у кролика — 7 с, у собаки — 16 с. У человека полное время кругооборота составляет 23 с. При этом на прохождение малого круга кровообращения приходится около1/5 времени, а на прохождение большого — нередко4/5.

100. Факторы, обеспечивающие движение крови по сосудам. Кровяное давление. Факторы, обуславливающие величину артериального и венозного кровяного давления. Кровяное давление как одна из физиологических констант организма. Функциональная система, поддерживающая кровяное давление.

Факторы, обеспечивающие движение крови

Все сосуды малого и большого круга, в зависимости от строения и функциональной роли делят на следующие группы:

Сосуды эластического типа

К сосудам эластического типа относятся аорта, легочная артерия и другие крупные артерии. В их стенке содержится много эластических волокон, поэтому она обладает большой упругостью и растяжимостью.

Сосудами мышечного типа являются артерии среднего и малого калибра. В их стенке больше гладкомышечных волокон. Однако мышечный слой мало влияет на просвет этих сосудов, а следовательно гемодинамику.

К резистивным сосудам относят концевые артерии и артериолы. Эти прекапиллярные сосуды имеют небольшой диаметр и толстую гладкомышечную стенку. Поэтому они оказывают наибольшее сопротивление току крови и влияние на системную гемодинамику. Сокращения их гладких мышц обеспечивают регуляцию кровотока в органах и тканях, а следовательно перераспределение крови.

Обменными сосудами являются капилляры. В них происходит диффузия и фильтрация воды, газов, минеральных и питательных веществ.

К емкостным сосудам относятся вены. Их стенка легко растягивается. Поэтому они способны накапливать большое количество крови, без изменения венозного кровотока. В связи с этим вены некоторых органов могут выполнять роль депо крови. Это вены печени, подкожных сосудистых сплетений, чревные вены. В венах может депонироваться до 70% всей крови. Истинных депо, как селезенка собаки, у человека нет.

Кроме этих типов имеются шунтирующие сосуды. Ими являются артериовенозные анастомозы. При некоторых условиях они обеспечивают переход крови в вены минуя капилляры.

Движение крови по артериям обусловлено следующими факторами:

1. Работой сердца, обеспечивающего восполнение энергозатрат системы кровообращения.

2. Упругостью стенок эластических сосудов. В период систолы энергия систолической порции крови переходит в энергию деформации сосудистой стенки. Во время диастолы стенка сокращается и ее потенциальная энергия переходит в кинетическую. Это способствует поддержанию снижающегося артериального давления и сглаживанию пульсаций артериального кровотока.

3. Разность давлений в начале и конце сосудистого русла. Она возникает в результате затраты энергии на преодоление сопротивления току крови. Сопротивление кровотоку в сосудах зависит от вязкости крови, длины и, в основном, от диаметра сосудов. Чем он меньше, тем больше сопротивление, а следовательно разность давления в начале и конце сосуда. В сосудистой системе сопротивление изменяется неравномерно. Поэтому неравномерно снижается и кровяное давление. В артериях оно уменьшается на 10%, артериолах и капиллярах на 85%, венах на 5 %. Таким образом, наибольший вклад в общее периферическое сопротивление (ОПС) вносят сосуды резистивного и обменного типа.

При физической работе артериолы и капилляры расширяются поэтому ОПС уменьшается.

Стенки вен более тонкие и растяжимые, чем у артерий. Энергия сердечных сокращений в основном уже затрачена на преодоление сопротивления артериального русла. Поэтому давление в венах невысокое и требуются дополнительные механизмы, способствующих венозному возврату к сердцу.Венозный кровоток обеспечивают следующие факторы:

1. Разность давлений в начале и конце венозного русла.

2. Сокращения скелетных мышц при движении, в результате которых кровь выталкивается из периферических вен к правому предсердию.

3. Присасывающее действие грудной клетки. На вдохе давление в ней становится отрицательным, что способствует венозному кровотоку.

4. Присасывающее действие правого предсердия в период его диастолы. Расширение его полости приводит к появлению отрицательного давления в нем.

5. Сокращения гладких мышц вен.

Движение крови по венам к сердцу связано и с тем, что в них имеются выпячивания стенок, которые выполняют роль клапанов.

В результате сокращений желудочков сердца и выброса из них крови, а также наличия сопротивления току крови в сосудистом русле создается кровяное давление. Это сила, с которой кровь давит на стенку сосудов. Величина давления в аорте и артериях зависит от фазы сердечного цикла. Во время систолы оно максимально и называется систолическим. В период диастолы минимально и носит название диастолического. Систолическое давление у здорового человека молодого и среднего возраста в крупных артериях составляет 100 – 130 мм.рт.ст. Диастолическое 60-80 мм.рт.ст. Разность между систолическим и диастолическим давлением называется пульсовым давлением. В норме его величина 30-40 мм.рт.ст. Кроме этого определяют среднее давление. Это такое постоянное, т.е. не пульсирующее давление, гемодинамический эффект которого соответствует определенному пульсирующему. Величина среднего давления ближе к диастолическому, так как продолжительность диастолы больше, чем систолы.

Читайте также:  Как отсрочить климакс и остановить увядание женского организма - методы и средства

Артериальное давление (АД) можно измерить прямыми и непрямыми методами. Для измерения прямым методом в артерию вводят иглу или канюлю, соединенные с манометром. Сейчас вводят катеттер с датчиком давления. Сигнал от датчика поступает на электрический манометр. В клинике прямое измерение производят только во время операций.

Наиболее широко используются непрямые методы Рива-Роччи и Короткова. В 1896 г. Рива-Роччи предложил измерять систолическое давление по величине давления, которое необходимо создать в резиновой манжете для полного пережатия артерии. Это давление измеряется манометром. Прекращение кровотока определяется по исчезновению пульса. В 1905 г. Коротков предложил метод измерения и систолического и диастолического давления. Он заключается в следующем. В манжете создается давление, при котором ток крови в плечевой артерии полностью прекращается. Затем оно постепенно снижается и одновременно фонендоскопом в локтевой ямке выслушиваются возникающие звуки. В тот момент, когда давление в манжете становится немного ниже, чем систолическое, появляются короткие ритмические звуки. Их называют тонами Короткова. Они обусловлены прохождением порций крови в деформированном манжетой сосуде в период систолы. Ток крови носит турбулентный характер, поэтому возникают звуки. По мере снижения давления в манжете интенсивность тонов уменьшается и при его определенной величине они исчезают. Ток крови приобретает ламинарный характер. В этот момент давление в манжете примерно соответствует диастолическому. В настоящий момент для измерения артериального давления используют аппараты, регистрирующие колебания сосуда под манжетой. Микропроцессор рассчитывает систолическое и диастолическое давление. Для длительной регистрации АД применяется артериальная осциллография. Это графическая регистрация пульсаций крупных артерий при их сжатии манжетой. Этот метод позволяет определять систолическое, диастолическое, среднее давление и эластичность стенки сосуда. Артериальное давление возрастает при физической и умственной работе, эмоциональных реакциях. При физической работе в основном увеличивается систолическое давление, т.к. возрастает систолический объем. Если происходит сужение сосудов, то повышается и систолическое и диастолическое давление. Такое явление наблюдается при сильных эмоциях.

При длительной графической регистрации артериального давления обнаруживается три типа его колебаний. Их называют волнами I-го, II-го и III-го порядков. Волны первого порядка это колебания давления в период систолы и диастолы. Волны второго порядка называются дыхательными. На вдохе артериальное давление возрастает, а на выдохе снижается. При гипоксии мозга возникают еще более медленные волны третьего порядка. Они обусловлены колебаниями активности сосудодвигательного центра продолговатого мозга.

В артериолах, капиллярах, мелких и средних венах давление постоянно. В артериолах его величина 40-60 мм.рт.ст., в артериальном конце капилляров 20-30 мм.рт.ст., венозном 8-12 мм.рт.ст. Кровяное давление в артериолах и капиллярах измеряется путем введения в них микропипетки, соединенной с манометром. Кровяное давление в венах равно 5-8 мм.рт.ст. В полых венах оно равно 0, а на вдохе на 3-5 мм.рт.ст. ниже атмосферного. Давление в венах измеряется прямым методом. Он называется флеботонометрией.

Повышение кровяного давления называется гипертонией, или гипертензией, понижение – гипотонией, гипотензией. Артериальная гипертония наблюдается при старении, гипертонической болезни, заболеваниях почек и т.д. Гипотония наблюдается при шоке, истощении, а также нарушении функций сосудодвигательного центра.

Функциональная система, поддерживающая на постоянном уровне величину кровяного давления, – временная совокупность органов и тканей, формирующаяся при отклонении показателей с целью вернуть их к норме. Функциональная система состоит из четырех звеньев:

полезного приспособительного результата;

Полезный приспособительный результат – нормальная величина кровяного давления, при изменении которого повышается импульсация от механорецепторов в ЦНС, в результате возникает возбуждение.

Центральное звено представлено сосудодвигательным центром. При возбуждении его нейронов импульсы конвергируют и сходят на одной группе нейронов – акцепторе результата действия. В этих клетках возникает эталон конечного результата, затем вырабатывается программа для его достижения.

Исполнительное звено включает внутренние органы:

органы кроветворения и кроверазрушения;

дыхательную систему (при изменении отрицательного внутриплеврального давления изменяется венозный возврат крови к сердцу);

железы внутренней секреции, которые выделяют адреналин, вазопрессин, ренин, альдостерон;

скелетные мышцы, изменяющие двигательную активность.

В результате деятельности исполнительного звена происходит восстановление величины кровяного давления. От механорецепторов ССС исходит вторичный поток импульсов, несущих информацию об изменении величины кровяного давления в центральное звено. Эти импульсы поступают к нейронам акцептора результата действия, где происходит сопоставление полученного результата с эталоном.

Таким образом, при достижении нужного результата функциональная система распадается.

В настоящее время известно, что центральный и исполнительный механизмы функциональной системы включаются не одновременно, поэтому по времени включения выделяют:

Механизмы кратковременного действия включаются быстро, но продолжительность их действия несколько минут, максимум 1 ч. К ним относятся рефлекторные изменение работы сердца и тонуса кровеносных сосудов, т. е. первым включается нервный механизм.

Промежуточный механизм начинает действовать постепенно в течение нескольких часов. Этот механизм включает:

изменение транскапиллярного обмена;

понижение фильтрационного давления;

стимуляцию процесса реабсорбции;

релаксацию напряженных мышц сосудов после повышения их тонуса.

Механизмы длительного действия вызывают более значительные изменения функций различных органов и систем (например, изменение работы почек за счет изменения объема выделяющейся мочи). В результате происходит восстановление кровяного давления. Гормон альдостерон задерживает Na, который способствует реабсорбции воды и повышению чувствительности гладких мышц к сосудосуживающим факторам, в первую очередь к системе «ренин – ангиотензин».

Таким образом, при отклонении от нормы величины кровяного давления различные органы и ткани объединяются с целью восстановления показателей. При этом формируется три ряда заграждений:

уменьшение сосудистой регуляции и работы сердца;

уменьшение объема циркулирующей крови;

изменение уровня белка и форменных элементов.

По материалам studfiles.net

Физические основы гемодинамики.

Закономерности движения крови в артериальном и венозном русле.

Гемодинамика.

Гемодинамика один из разделов биомеханики, изучающий законы движения крови по кровеносным сосудам. Задача гемодинамики – установить взаимосвязь между основными гемодинамическими показателями, а также их зависимость от физических параметров крови и кровеносных сосудов. К основным гемодинамическим показателям относятся давление и скорость кровотока. Давление – это сила, действующая со стороны крови на сосуды, приходящаяся на единицу площади. Различаю объемную и линейную скорость кровотока. Объемной скоростью кровотока Q называют величину, численно равную объему жидкости, протекающему в единицу времени через данное сечение трубы : Q=V/t

Линейная скорость представляет путь, проходимый частицами крови в единицу времени : v=l/t. Поскольку скорость крови неодинакова по сечению сосудов, то речь пойдет о средней скорости. Линейная и объемная скорости связаны простым соотношением Q=vS, где S площадь поперечного сечения потока жидкости.

Для сплошного течения несжимаемой жидкости выполняется условие неразрывности струи: через любое сечение струи в единицу времени протекают одинаковые объемы жидкости: Q=vS=const. Для гемодинамики этот закон можно сформулировать так: в любом сечении сердечно-сосудистой системы объемная скорость кровотока одинакова.

Физическая модель сосудистой системы. Работа сердца.

Физическую модель сердечно-сосудистой системы можно представить в виде замкнутой (не имеющей сообщения сатмосферой), мно­гократно разветвленной и заполненной жидкостью системы трубок с эластичными стенками, движение жидкости в которой происходит под действием ритмически работающего нагнетательного насо­са (на рис. в виде резиновой груши). При сжатии груши содержа­щийся в ней объем жидкости проталкивается через отверстие клапана К1 в систему трубок состороны Л,вызывая в них продвижение жидко­сти в сторону Б, затем клапан К1 запирается, груша расширяется и через клапан К2 в нее поступает соответствующий объем жидкости со стороны Б системы.

Особенностьюданной системы является, прежде всего, постепенное и множественное разветвление трубок, особенно в ее средней части. Последняя состоит из весьма большого числа коротких параллельных трубок малого сечения, общий просвет которых имеет настолько боль­шое сечение, что скорость жидкости здесь снижается почти до нуля. Од­нако внутреннее трение в пристеночных слоях этих трубок настолько велико, что именноэта средняя часть системы представляет наибольшее сопротивление течению жидкости и обусловливает максимальное падение давления.

Другой особенностью системы является эластичность стенок трубок, благодаря которой при ритмической работе насоса ток жидкости в ней принимает равномерный характер. Допустим, что при сжатии груши некоторое количество жидкости поступает в трубку А, уже заполненную жидкостью под некоторым давлением. Давление в трубке А повышается,эластичные стенки ее растягиваются и вмещают избыток жидкости. Затем стенки трубки А постепенно сокращаются и прогоняют избыток жидкости в следующее звено системы, стенки ко­торого также сначала растягиваются затем сокращаются и таким образом проталкивают жидкость в последующие звенья систе­мы трубок. В результате течение жидкости постепенно принимает рав­номерный характер. Иллюстрацией подобного явления может служить следующий опыт. Две трубки — жесткая и А — с эластичными стенками) с помощью тройника Т присоединены к насосу-груше Г <В — резервуар с водой). На конце трубок имеются пробки Я с небольшими отверстиями, препятствующие свободному вы­теканию воды. При работе грушей можно наблюдать, как из трубы Б вытекает прерывистая струя, а из трубы А, стенки которой при этом периодически растя­гиваются и сокращаются — непрерывная.

Переходим к сосудистой системе. Начальное давление, необходимое для продвижения крови по всей сосудистой системе, создается работой сердца.

Рассмотрим схематически явления, происходящие в большом круге кровообращения. При каждом сокращении левого желудочка сердца в аорту, уже заполненную кровью под соответствующим давлением, выталкивается так называемый ударный объем крови, в среднем раз­ный 65—70 мл. Затем клапаны аорты закрываются.

Поступивший в аорту дополнительный объем крови повышает дав­ление в ней и соответственно растягивает ее стенки. Волна повышенно­го давления, которое называется систолическим, вызывает колебания сосудистых стенок, распространяющиеся вдоль более крупных арте­рий в виде упругой волны. Эта волна давления называется пульсовой волной,скорость ее распространения зависит от упругости сосудистых стенок и имеет порядок 6—8 м/с.

Затем в, период расслабления сердечной мышцы (диастола, давление крови в этот момент называется диастолическим) стенки аорты постепенно, сокращаются до исходного положения и проталки­вают поступивший объем крови в более отдаленные крупные артерии. Стенки последних в свою очередь растягиваются и затем, сокращаясь, проталкивают кровьв последующие звенья сосудистой системы. В ре­зультате ток крови принимает непрерывный характер со скоростью в крупных сосудах порядка.0,3—0,5 м/с.

При таком механизме продвижения крови только часть энергии, развеваемой сердечной мышцей при сокращении, передается непосредственно массе крови в аорте и переходит в ее кинетическую энергию. Остальная часть энергии переходит в потенциальную энергию деформации растяжения эластичных стенок крупных сосудов (преиму­щественно аорты) и затем уже постепенно по мере возвращения их в исходное положение передается массе крови в период расслабления сердечной мышцы. Существует также такое понятие как пульсовое давление крови, равное разности систолического и диастолического давления, составляющее в большом круге кровообращения примерно 40 мм рт. ст.

Количество Q крови, протекающее через поперечное сечение участка сосудистой системы в единицу времени и называемое объемной скоростью кровотока, зависит от разности давлений в начале и конце участка и его сопротивления току крови. При расчетах объемной скорости на отдельных участках сосудистой системы в первом приближе­нии пользуются формулой Гагена — Пуазейля, хотя сопротивление току крови в сосудистой системе выше, чем следует по формуле, вслед­ствие потерь энергии при деформации ее эластичных стенок, а также неизбежных завихрений в местах разветвления. Точный расчет с уче­том этих условий весьма сложен.

Сопротивление току крови, следовательно, и падение давления на различных участках сосудистой системы весьма различны. Оно зави­сит от общего просвета и числа сосудов в разветвлении. Наибольшее падение давления крови — не менее 50% от начального давления — происходит в артериолах. Число артериол в сотни раз больше числа крупных артерий при сравнительно небольшом увеличении общего просвета сосудов. Поэтому потери давления от пристеночного трения в них весьма велики. Общее число капилляров еще больше, однако дли­на их настолько мала, что падение давления крови в них хотя и сущест­венно, но меньше, чем в артериолах.

В сети венозных сосудов, площадь сечения которых в среднем в два раза больше площади сечения соответствующих артерий, скорость тече­ния крови невысока и падения давления незначительны. В крупных венах около сердца давление становится на несколько миллиметров ртутного столба ниже атмосферного. Кровь в этих условиях движется под влиянием присасывающего действия грудной клетки при вдохе.

На рис. схематически показано распределение давления крови в отдельных частях системы сосудов большого круга кровообращения. На рис. приведены графики изменения давления и скорости движе­ния крови в основных частях сосудистой системы. Движение крови по сосудам, особенно распределение ее между раз­личными частями самой сосудистой системы, зависит не только от ра­боты сердца, но и от общего просвета сосудов, обусловленного тону­сом сосудистых стенок. В эластичных стенках сосуда имеются гладкие мышечные волокна, от степени сокращения которых зависит просвет сосуда. Имеют значение также общее количество циркулирующей крови, ее вязкость и т. п. Все эти факторы находятся под регулирующим влиянием центральной нервной системы. Таким образом, физио­логические факторы, накладываясь на физические закономерности, ре­гулируют кровообращение в различных частях организма.

В норме сосудистая система замкнута и не имеет сообщения с атмосферой. Сосуды располагаются в различных направлениях, причем артериальные и венозные сосуды, по которым кровь движется в про­тивоположных направлениях, большей частью параллельны.

Эти сосуды сообщаются между собой через капилляры, поэтому в первом приближении можно считать, что гидростатическое давление крови в них, как в сообщающихся сосудах, взаимно уравновешивается, и в ка­честве модели можно рассматривать систему горизонтальных трубок.

В случае повреждения сосудистой стенки может образоваться сообщение сосуда с атмосферой, и тогда проявляется действие гидроста­тического давления крови. Общеизвестно, например, что для ослаб­ления кровотечения из пораненного сосуда конечности ей следует придать возвышенное положение.

Течение крови в сосудистой системе в нормальных условиях имеет ламинарный характер. Оно может переходить в турбулентное при нарушении этих условий, например при резком сужении просвета сосу­да. Подобные явления могут иметь место при неполном открытии или, наоборот, при неполном закрытии сердечных или аортальных клапанов. При этом появляются звуки, называемые сердечными шумами, кото­рые являются одним из характерных признаков этого явления.

Работа, совершаемая сердцем, в основном складывается из работы при сокращении желудочков, главным образом левого. (Работа право­го желудочка принимается равной 0,2—0,15 от работы левого.)

Работа сердечной мышцы при каждом сокращении левого желудоч­ка затрачивается на сообщение объему выталкиваемой крови энергии, необходимой для его продвижения по всему кругу кровообращения. Эта энергия состоит из потенциальной энергии давления, которое долж­но быть создано вначале для преодоления сопротивления движению крови по всему ее пути, и кинетической энергии для сообщения массе крови необходимой скорости движения. На основании данных эта энергия может быть представлена формулой

где р — среднее давление, под которым кровь выбрасывается в аорту, р = 100 мм рт. ст=10 5 100/760 =1,3·10 4 Па; ρ = 1,05· 10 3 кг/м 3 — плотность крови; — скорость крови в аорте, в состоянии покоя ; ударный объем крови в покое в среднем , Аж= 0,95 Дж

Учитывая работу правого желудочка, для сердца в целом найдем Ас=1,2∙Аж=1,14 Дж

Время сокращения желудочков Тогда мощность, развиваемая сердцем при сокращении, будет NC= Ас/tж=3,4 Вт

Считая в среднем 60 сокращений сердца в 1 мин, получим, что за 1 мин оно совершает работу .

При расчете работы сердца можно вместо ударного учитывать минутный Vмин объем крови, равный произведению ударного объема на число N сокращений сердца в 1 мин:

. В нашем при­мере мл/мин, или 4,2 л/мин.

При мышечной работе средней интенсивности минутный объем кро­ви увеличивается примерно в пять раз, т. е. 20 л/мин. При этом соответственно возрастает скорость течения крови в аорте: . Тогда работа, совершаемая сердцем в 1 мин, будет Ас≈360 Дж.

Дата добавления: 2016-11-29 ; просмотров: 1603 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

По материалам poznayka.org

Добавить комментарий