Главная > Болезни > Задачи по генетике на группы крови при моногибридном скрещивании

Задачи по генетике на группы крови при моногибридном скрещивании

Задача 1
При скрещивании двух сортов томата с красными шаровидными и желтыми грушевидными плодами в первом поколении все плоды шаровидные, красные. Определите генотипы родителей, гибридов первого поколения, соотношение фенотипов второго поколения.
Решение:
Так как при скрещивании гороха все особи потомства имеют признак одного из родителей, значит, гены красного цвета (А) и гены шаровидной формы плодов (В) являются доминантными по отношению к генам жёлтой окраски (а) и грушевидной формы плодов (b). генотипы родителей: красные шаровидные плоды – ААВВ, желтые грушевидные плоды – ааbb.
Для определения генотипов первого поколения, соотношение фенотипов второго поколения неободимо составить схемы скрещивания:

Схема первого скрещивания:

Наблюдается единообразие первого поколения, генотипы особей AaBb (1-й закон Менделя).

Схема второго скрещивания:

Соотношение фенотипов второго поколения: 9 – красные шаровидные; 3 – красные грушевидные; 3 — желтые шаровидные; 1 – желтые грушевидные.
Ответ:
1) генотипы родителей: красные шаровидные плоды – ААВВ, желтые грушевидные плоды – ааbb.
2) генотипы F1: красные шаровидные АаВb.
3) соотношение фенотипов F2:
9 – красные шаровидные;
3 – красные грушевидные;
3 — желтые шаровидные;
1 – желтые грушевидные.

Задача 2
Отсутствие малых коренных зубов у человека наследуется как доминантный аутосомный признак. Определите возможные генотипы и фенотипы родителей и потомства, если один из супругов имеет малые коренные зубы, а у другого они отсутствуют и он гетерозиготен по этому признаку. Какова вероятность рождения детей с этой аномалией?
Решение:
Анализ условия задачи показывает, что скрещиваемые особи анализируются по одному признаку – коренные зубы, который представлен двумя альтернативными проявлениями: наличие коренных зубов и отсутствие коренных зубов. Причем сказано, что отсутствие коренных зубов является доминантным признаком, а наличие коренных зубов – рецессивным. Эта задача – на , и для обозначения аллелей достаточно будет взять одну букву алфавита. Доминантный аллель обозначим прописной буквой А, рецессивный аллель – строчной буквой а.
А — отсутствие коренных зубов;
а — наличие коренных зубов.
Запишем генотипы родителей. Помним, что генотип организма включает в себя два аллеля изучаемого гена “А”. Отсутствие малых коренных зубов – доминантный признак, поэтому родитель,у которого отсутствуют малые коренные зубы и он гетерозиготен, значит его генотип — Аа. Наличие малых коренных зубов — рецессивный признак, поэтому родитель, у которого отсутствуют малые коренные зубы гомозиготен по рецессивному гену, значит генотип его — аа.
При скрещивании гетерозиготного организма с гомозиготным рецесивным образуется потомство двух типов и по генотипу, и по фенотипу. Анализ скрещивания подтверждает это утверждение.

Ответ:
1) генотипы и фенотипы Р: аа – с малыми коренными зубами, Аа – без малых коренных зубов;
2) генотипы и фенотипы потомства: Аа – без малых коренных зубов, аа – с малыми коренными зубами; вероятность рождения детей без малых коренных зубов – 50%.

Задача 3
У человека ген карих глаз (А) доминирует над голубым цветом глаз, а ген цветовой слепоты рецессивен (дальтонизм – d) и сцеплен с Х-хромосомой. Кареглазая женщина с нормальным зрением, отец которой имел голубые глаза и страдал цветовой слепотой, выходит замуж за голубоглазого мужчину с нормальным зрением. Составьте схему решения задачи. Определите генотипы родителей и возможного потомства, вероятность рождения в этой семье детей-дальтоников с карими глазами и их пол.
Решение:

Так как женщина кареглазая, а её отец страдал цветовой слепотой и был голубоглазым, то она получила рецессивный ген голубоглазости и ген дальтонизма от отца. Следовательно, женщина гетерозиготна по гену окраски глаза и является носителем гена дальтонизма, так как получила одну Х-хромосому от отца-дальтоника, её генотип — АаX D X d . Так как мужчина голубоглазый с нормальным зрением, то его генотип будет гомозиготен по рецессивному гену а и Х-хромосома будет содержать доминантный ген нормального зрения, его генотип — ааX D Y.
Определим генотипы возможного потомства, вероятность рождения в этой семье детей-дальтоников с карими глазами и их пол, составив схему скрещивания:

Ответ:
Схема решения задачи включает: 1) генотип матери – AaX D X d (гаметы: AX D , aX D , AX d , aX D ), генотип отца – aaX D Y (гаметы: aX D , aY);
2) генотипы детей: девочки – AaX D X D , ааX D X D , AaX D X d , ааX D X d ; мальчики – AaX D Y, aaXDY, AaX d Y, aaX D Y;
3) вероятность рождения детей-дальтоников с карими глазами: 12,5% AaX d Y – мальчики.

Задача 4
При скрещивании растения гороха с гладкими семенами и усиками с растением с морщинистыми семенами без усиков все поколение было единообразно и имело гладкие семена и усики. При скрещивании другой пары растений с такими же фенотипами (гороха с гладкими семенами и усиками и гороха с морщинистыми семенами без усиков) в потомстве получили половину растений с гладкими семенами и усиками и половину растений с морщинистыми семенами без усиков. Составьте схему каждого скрещивания.
Определите генотипы родителей и потомства. Объясните полученные результаты. Как определяются доминантные признаки в данном случае? Какой закон генетики при этом проявляется?
Решение:
Эта задача – на дигибридное скрещивание, так как скрещиваемые организмы анализируют по двум парам альтернативных признаков. Первая пара альтернативных признаков: форма семени – гладкие семена и морщинистые семена; вторая пара альтернативных признаков: наличие усиков – отсутствие усиков. За эти признаки отвечают аллели двух разных генов. Поэтому для обозначения аллелей разных генов будем использовать две буквы алфавита: “А” и “В”. Гены расположены в аутосомах, поэтому будем обозначать их только с помощью этих букв, без использования символов Х- и Y – хромосом.
Так как при скрещивании растения гороха с гладкими семенами и усиками с растением с морщинистыми семенами без усиков все поколение было единообразно и имело гладкие семена и усики, то можно сделать вывод — признак гладкие семена гороха и признак отсутствия усиков — доминантные признаки.
А ген, определяющий гладкую форму гороха; а — ген, определяющий морщинистую форму гороха; В — ген, определяющий наличие усиков у гороха; b — ген, определяющий отсутствие усиков у гороха. Генотипы родителей: ААВВ, aabb.
Анализ скрещивания подтверждает эти рассуждения.

Схема первого скрещивания

Так как при 2-м скрещивании произошло расщепление по двум парам признаков в соотношении 1:1, то можно считать, что гены, определяющие гладкие семена и наличие усиков (А, В), локализованы в одной хромосоме и наследуются сцеплено, растение с гладкими семенами и усиками гетерозиготно, значит генотипы родителей второй пары растений имеют вид: АаВb; aabb.
Анализ скрещивания подтверждает эти рассуждения.

Схема второго скрещивания

Ответ:
1. Гены, определяющие гладкие семена и наличие усиков, являются доминантными, так как при 1-м скрещивании всё поколение растений было одинаковым и имело гладкие семена и усики. Генотипы родителей: гладкие семена и усики — AABB (аметы АВ), морщинистые семена и без усиков — aabb (аметы — ab). Генотип потомков — AaBb. Проявляется закон единообразия первого поколения при скрещивании этой пары растений
2. При скрещивании второй пары растений гены, определяющие гладкие семена и наличие усиков (А, В), локализованы в одной хромосоме и наследуются сцеплено, так как при 2-м скрещивании произошло расщепление по двум парам признаков в соотношении 1:1. Проявляется закон сцепленного наследования.

Задача 5
Гены окраски шерсти кошек расположены в Х-хромосоме. Чёрная окраска определяется геном Х B , рыжая — геном Х b, гетерозиготы Х B Х b имеют черепаховую окраску. От чёрной кошки и рыжего кота родились: один черепаховый и один чёрный котёнок. Составьте схему решения задачи. Определите ьгенотипы родителей и потомства, возможный пол котят.
Решение:
Интересное сочетание: гены черного и рыжего цвета не доминируют друг над другом, а в сочетании дают черепаховую окраску. Здесь наблюдается кодоминирование (взаимодействие генов). Возьмем: Х B – ген отвечающий за черный цвет, Х b – ген отвечающий за рыжий цвет; гены Х В и Х b равнозначны и аллельны (Х В = Х b ).
Так как скрещивались чёрная кошка и рыжий кот, то их гентипы будут иметь вид: кошка — Х B Х В (гаметы Х B ), кот — Х b Y (гаметы Х b, Y). При данном типе скрещивания возможно рождение чёрных и черепаховых котят в соотношении 1:1. Анализ скрещивания подтверждает это суждение.

Ответ:
1) генотипы родителей: кошка Х B Х В (гаметы Х B ), кот — Х b Y (гаметы Х b , Y);
2) генотипы котят: черепаховый — Х B Х b , Х B Х b Y;
3) пол котят: самка — черепаховая, самец — чёрный.
При решении задачи использовали закон чистоты гамет и сцепленное с полом наследование. Взаимодействие генов — кодоминирование. Вид скрещивания — моногибридное.

Задача 6
Скрестили дигетерозиготных самцов мух дрозофил с серым телом и нормальными крыльями (признаки доминантные) с самками с чёрным телом и укороченными крыльями (рецессивные признаки). Составьте схему решения задачи. Определите генотипы родителей, а также возможные генотипы и фенотипы потмства F1, если доминантные и рецессивные гены данных признаков попарно сцеплены, а кроссинговер при образовании половых клеток не происходит. Объясните полученные результаты.
Решение:
Генотип дигетерозиготного самца: AaBb, генотип самки гомозиготной по рецессивным признакам имеет вид: aabb. Так как гены сцеплены, то самец даёт два типа гамет: АВ, аb, а самка — один тип гамет: ab, поэтому у потомства проявляется только два фенотипа в соотношении 1:1.
Анализ скрещивания подтверждает эти рассуждения.

Ответ:
1) генотипы родителей: самка aabb (аметы: ab), самец АаBb (гаметы: AB, ab);
2) генотипы потомства: 1АаВb серое тело, нормальные крылья; 1 ааbb чёрное тело, укороченные крылья;
3) так как гены сцеплены, то самец даёт два типа гамет: АВ, аb, а самка — один тип гамет: ab, поэтому у потомства проявляется только два фенотипа в соотношении 1:1. Проявляется закон сцеплённого наследования.

Задача 7
У родителей со свободной мочкой уха и треугольной ямкой на подбородке родился ребёнок со сросшейся мочкой уха и гладким подбородком. Определите генотипы родителей, первого ребёнка, генотипы и фенотипы других возможных потомков. составьте схему решения задачи. Признаки наследуются независимо.
Решение:
Дано:
Каждый из родителей имеет свободную мочку уха и треугольную ямку и у них родился ребёнок со сросшейся мочкой уха и гладким подбородком, значит, свободная мочка уха и треугольный подбородок доминантные признаки, а сросшаяся мочка и гладкий подбородок рецессивные признаки. Из этих рассуждений делаем вывод: родители дигетерозиготны, а ребёнок дигомозиготный по рецессивным признакам. составим таблицу признаков:

Следовательно, генотипы родителей: мать АаВb (гаметы АВ, Аb, Ab, ab), отец АаВb (гаметы АВ, Аb, Ab, ab), генотип первого ребёнка: aabb — сросшаяся мочка, гладкий подбородок.
Анализ скрещивания подтверждает это суждение.

Фенотипы и генотипы потомства:
свободная мочка, треугольная ямка, А_В_
свободная мочка, гладкий подбородок, А_bb
сросшаяся мочка, треугольная ямка, ааВ_
сросшаяся мочка, гладкий подбородок, aabb.
Ответ:
1) генотипы родителей: мать АаВb (гаметы АВ, Аb, Ab, ab), отец АаВb (гаметы АВ, Аb, Ab, ab);
2) генотип первого ребёнка: aabb — сросшаяся мочка, гладкий подбородок;
3) генотипы и фенотипы возможных потомков:
свободная мочка, треугольная ямка, А_В_;
свободная мочка, гладкий подбородок, А_bb;
свободная мочка, треугольная ямка, А_В_;
сросшаяся мочка, гладкий подбородок, aabb.

Задача 8
У кур встречается сцеплённый с полом летальный ген (а), вызывающий гибель эмбрионов, гетерозиготы по этому признаку жизнеспособны.. Скрестили нормальную курицу с гетерозиготным петухом (уптиц гетерогаметный пол — женский). Составьте схему решения задачи, определите генотипы родителей, пол, генотип возможного потомства и вероятность гибели эмбрионов.
Решение:
По условию задачи:
Х А — развитие нормального эмбриона;
Х a — гибель эмбриона;
Х А Х a — жизнеспособные особи.
Определим генотипы и фенотипы потомства

Ответ:
1) генотипы родителей: Х А Y (гаметы Х А , Y), Х А Х А (гаметы Х А , Х А );
2) генотипы возможного потомства: Х А Y, Х А Х А , Х А Х a , Х a Y;
3) 25% — Х a Y нежизнеспособные.

адача 9
При скрещивании растения с длинными полосатыми плодами с растением, имеющим круглые зелёные плоды, в потомстве получили растения с длинными зелёными и круглыми зелёными плодами. При скрещивании такого же арбуза (с длинными полосатыми плодами) с растением, имеющим круглые полосатые плоды, всё потомство имело круглые полосатые плоды. Определите доминантные и рецессивные признаки, генотипы всех родительских растений арбуза.
Решение:
А — ген, отвечающий за формирование круглого плода
a — ген, отвечающий за формирование длинного плода
В — ген, отвечающий за формирование зелёной окраски плода
b — ген, отвечающий за формирование полосатого плода
Так как при скрещивании растения с длинными полосатыми плодами с растением, имеющим круглые зелёные плоды, в потомстве F1 получили растения с длинными зелёными и круглыми зелёными плодами, то можно сделать вывод, что доминантными признаками являются круглые зелёные плоды, а рецессивными — длинные полосатые. Генотип растения с длинными полосатыми плодами — ааbb, а генотип растения с круглыми зхелёными плодами — АаВВ, потому что в потомстве все особи с зелёными плодами, и по 1/2 с круглыми и длинными плодами, значит, данное растение является гетерозиготй по доминантному признаку формы плода и гомозиготой по доминантному признаку окраски плода. Генотип потомства F1: AaBb, aaBb. Учитывая, что при скрещивании родительского арбуза с длинными полосатыми плодами (дигомозигота по рецессивным признакам) с растением, имеющим круглые полосатые плоды, всё потомство F2 имело круглые полосатые плоды, генотип родительского растения с зелёными полосатыми плодами, взятого для второго скрещивания, имеет вид: ААbb. Генотип потомства F2 — Ааbb.
Анализы проведённых скрещиваний подтверждают наши предположения.

Читайте также:  Симптомы миокардиодистрофии, причины её возникновения, диагностика и лечение

Схема первого скрещивания

Схема второго скрещивания

Ответ:
1) доминантные признаки — плоды круглые, зелёные, рецессивные признаки — плоды длинные, полосатые;
2) генотипы родителей F1: aabb (длинные полосатые) и АаВВ (круглые зелёные);
3) генотипы родителей F2: ааbb (длинные полосатые) и ААbb (круглые полосатые).

Задача 10
Растение дурман с пурпурными цветками (А) и гладкими коробочками (b) скрестили с растением, имеющим пурпурные цветки и колючие коробочки. В потомстве получены следующие фенотипы: с пурпурными цветками и колючими коробочками, с пурпурными цветками и гладкими коробочками, с белыми цветками и гладкими коробочками, с белыми цветками и колючими коробочками. Составьте схему решения задачи. Определите генотипы родителей, потомства и возможное соотношение фенотипов. Установите характер наследования признаков.
Решение:
А ген пурпурной окраски цветка;
a — ген белой окраски цветка;
В — ген, формирующий колючую коробочку;
b — ген, формирующий гладкую коробочку.
Эта задача на дигибридное скрещивание (независимое наследование признаков при дигибридном скрещивании), так как растения анализируются по двум признакам: окраске цветка (пурпурная и белая) и форме коробочки (гладкая и колючая). Эти признаки обусловлены двумя разными генами. Поэтому для обозначения генов возьмем две буквы алфавита: “А” и “В”. Гены расположены в аутосомах, поэтому будем обозначать их только с помощью этих букв, без использования символов Х- и Y- хромосом. Гены, отвечающие за анализируемые признаки, не сцеплены друг с другом, поэтому будем использовать генную запись скрещивания.
Пурпурная окраска доминантный признак (А), а появившаяся в потомстве белая окраска — рецессивный признак (а). Каждый из родителей имеет пурпурную окраску цветка, значит, оба они несут доминантный ген А. Поскольку у них есть потомство с генотипом аа, то каждый из них должен нести также рецессивный ген а. Следовательно, генотип обоих родительских растений по гену окраски цветка – Аа. Признак колючая коробочка является доминантным по отношению к признаку гладкая коробочка, а так как при скрещивании растения с колючей коробочкой и растения с гладкой коробочкой появилось потомство и с колючей коробочкой , и с гладкой коробочкой, то генотип родителя с доминантным признаком по форме коробочки будет гетерозиготен (Bb), а по рецессивному — (bb). Тогда генотипы родителей: Aabb, aaBb.
Теперь определим генотипы потомства, проведя анализ скрещивания родительских растений:

Ответ:
1) генотипы родителей: Aabb (гаметы Ab, ab) * АаВb (гаметы АВ, Ab, aB, ab);
2) генотипы и соотношение фенотипов:
3/8 пурпурные колючие (AABb и AaBb);
3/8 пурпурные гладкие (ААbb и Aabb);
1/8 белые колючие (ааВb);
1/8 белые гладкие (ааbb);
3) независимое наследование признаков при дигибридном скрещивании.

Задача 11
Известно, что хорея Гентингтона (А) — заболевание, проявляющееся после 35-40 лет и сопровождающееся прогрессирующим нарушением функций головного мозга, и положительный резус-фактор (В) наследуются как несцеплённые аутосомно-доминантные признаки. Отец является дигетерозиготой по этим генам, а мать имеет отрицательный резус-фактор и здорова. Составьте схему решения задачи и определите генотипы родителей, возможного потомства и вероятность рождения здоровых детей с положительным резус-фактором.
Решение:
А ген болезни Гентингтона;
a — ген нормального развития мозга;
В — ген положительного резус-фактора;
b — ген отрицательного резус-фактораю
Эта задача на дигибридное скрещивание (несцеплённые аутосомно-доминантные наследование признаков при дигидридном скрещивании). По условию задачи отец дигетерозигот, значит его генотип — АаВb. Мать фенотипически рецессивна по обоим признакам, значит её генотип — ааbb.
Теперь определим генотипы потомства, проведя анализ скрещивания родителей:

Ответ:
1) генотипы родителей: отец — AaВb (гаметы АВ Ab, аВ, ab), мать ааbb (гаметы ab);
2) генотипы потомства: AaBb, Aabb, aaBb, aabb;
3)25% потомства с генотипом aaBb — резус-положительные и здоровы.

По материалам buzani.ru

Решение задач по генетике на группу крови – это не только увлекательное времяпрепровождение на уроках биологии, но и важный процесс, который используется на практике в различных лабораториях и медицинско-генетических консультациях. Здесь есть свои особенности, которые напрямую связаны с наследованием генов группы крови человека.

Кровь является жидкой средой организма, и в ней находятся форменные элементы – эритроциты, а также жидкая плазма. Наличие или отсутствие каких-либо веществ в крови человека запрограммировано на генетическом уровне, что и отображается соответствующей записью при решении задач.

Наиболее распространенными считаются три вида записи группы крови человека:

  1. По системе АВ0.
  2. По наличию или отсутствию резус-фактора.
  3. По системе MN.

В основе данного типа записи лежит такое взаимодействие генов, как кодоминирование. Оно гласит, что ген может быть представлен больше, чем двумя различными аллелями, и каждый из них в генотипе человека имеет свое собственное проявление.

Для решения задачи на группу крови следует помнить еще одно правило кодоминирования: здесь нет рецессивных или доминантных генов. Это значит, что различные комбинации аллелей могут дать большое разнообразие потомков.

Ген А в этой системе отвечает за появление антигена А на поверхности эритроцитов, ген В – за образование антигена В на поверхности этих клеток, а ген 0 – за отсутствие того или иного антигена. Например, если генотип человека записывается как IAIB (ген I используется для решения задачи по генетике на группу крови), то на его эритроцитах присутствуют оба антигена. Если же у него нет этих антигенов, но в плазме присутствуют антитела «альфа» и «бета», то его генотип записывается как I0I0.

На основе группы крови проводят переливание от донора к реципиенту. В современной медицине пришли к выводу, что наилучшим переливанием является тот случай, когда и донор, и реципиент имеют одну и ту же группу крови. Однако может возникнуть в практике ситуация, когда нет возможности найти подходящего человека с той же группой крови, что и пострадавший, которому необходимо переливание. В этом случае пользуются фенотипическими особенностями первой и четвертой группы.

У людей с первой группой на поверхности эритроцитов отсутствуют антигены, что дает возможность перелить такую кровь любому другому человеку с наименьшими последствиями. Это значит, что такие люди являются универсальными донорами. Если речь идет о 4 группе, то такие организмы относятся к универсальным реципиентам, т. е. им могут переливать кровь от любого донора.

Задачи на группу крови требуют определенной записи генотипов. Вот 4 группы людей по наличию антигенов на поверхности эритроцитов и их возможные генотипы:

II(А)-группа. Генотипы IAIA или IAI0.

III(В)-группа. Генотипы IBIB или IBI0.

IV(AB)-группа. Генотип IAIB.

Еще один способ обозначения групп крови человека, который основан на наличии или отсутствии резус-фактора. Этот фактор также представляет собой сложный белок, который образуется в крови. Он кодируется несколькими парами генов, однако определяющая роль отводится генам, которые обозначаются буквами D (положительный резус, или Rh+) и d ( отрицательный резус, или Rh-). Соответственно, передача этого признака обуславливается моногенным наследованием, а не кодоминированием.

Задачи на группы крови с решением требуют следующей записи генотипов:

  • Люди с резус-положительной группой крови имеют генотипы DD или Dd.
  • У людей с отрицательным резус-фактором генотип записывается, как dd.

Этот способ записи встречается чаще в странах Западной Европы, однако также может использоваться при решении задачи на группу крови. Он основан на проявлении двух аллельных генов, которые наследуются по типу кодоминирования. Каждый из этих аллелей отвечает за синтез белка в крови человека. Если генотип организма представляет собой комбинацию MM, то в его крови присутствует только тот тип белка, который кодируется соответствующим геном. Если же такой генотип поменять на MN, то в плазме будут находиться уже два разных вида белка.

Задачи на группу крови по системе MN требуют следующей записи генотипов:

  • Группа людей с генотипом MN.
  • Группа людей с генотипом MM.
  • Группа людей с генотипом NN.

При оформлении генетических задач необходимо соблюдать следующие правила:

  1. Написать таблицу исследуемых признаков, а также генов и генотипов, которые отвечают за проявление этого признака.
  2. Написать генотипы родителей: сначала пишется особь женского пола, а затем мужского.
  3. Обозначить гаметы, которые дает каждая особь.
  4. Проследить генотипы и фенотипы потомков в F1, и, если требует того задание, написать вероятность их появления.

Также решение задач по генетике на группы крови требует понимания типа взаимодействия, который вам был предложен в условии. От этого зависит ход решения, а также вы заранее можете предсказать результаты скрещивания и возможную вероятность появления зигот. Если для одного и того же условия подходят два или боле вида взаимодействия генов, всегда берется самый простой из них.

Задачи по биологии на группу крови по системе АВ0 решаются следующим образом:

«Женщина, которая имеет первую группу крови, вышла замуж за мужчину с четвертой группой крови. Определить генотип и фенотип их детей, а также вероятность появления зигот с различными генотипами».

Сначала мы должны знать, какие гены за какое проявление признаков отвечают:

По материалам fb.ru

  • Охарактеризовать сущность биологических процессов наследственности и изменчивости.
  • Сформировать знания о механизмах проявления закономерностей моногибридного скрещивания.

I. Проверка домашнего задания

1. Тестирование

1. Генетика — это наука о:

  • селекции организмов
  • наследственности и изменчивости организмов
  • эволюции органического мира
  • генной инженерии

2. Ген кодирует информацию о структуре:

  • молекулы аминокислоты
  • одной молекулы тРНК
  • одной молекулы фермента
  • нескольких молекул белка

3. Фенотип — это:

  • проявляющиеся внешне и внутренне признаки организма
  • наследственные признаки организма
  • способность организма к изменениям
  • передача признака от поколения к поколению

4. Аллельными считаются следующие пары генов, определяющие:

  • рост человека — форма его носа
  • карие глаза — голубые глаза
  • рогатость у коров — окраска коров
  • черная шерсть — гладкая шерсть

5. Гетерозигота — это пара:

  • аллельных доминантных генов
  • неаллельных доминантного и рецессивного генов
  • разных аллельных генов
  • аллельных рецессивных генов

6. У людей в норме два разнояйцовых близнеца отличаются друг от друга:

  • по фенотипу
  • по генотипу
  • по фенотипу и генотипу
  • по числу хромосом в ядрах соматических клеток

1. Ген человека — это часть молекулы

  • белка
  • углевода
  • ДНК
  • иРНК

2. Генотип организма — это:

  • совокупность всех генов данного организма
  • внешний облик организма
  • совокупность всех признаков организма
  • пара генов, отвечающих за развитие признака

3. Чистой линией называется:

  • потомство, не дающее расщепления по изучаемому признаку
  • разнообразное потомство, полученное от скрещивания разны особей
  • пара родителей, отличающихся друг от друга одним признаком
  • особи одного вида

4. Гомозигота — это пара только:

  • рецессивных аллельных генов
  • доминантных аллельных генов
  • неаллельных генов
  • одинаковых по проявлению аллельных генов

5. Локус — это:

  • пара аллельных генов
  • сцепленные гены
  • пара неаллельных генов
  • расположение гена в хромосоме
Читайте также:  Биохимический анализ крови что показывает холестерин в крови

6. Потомство, рождающееся от одного самоопыляющегося растения в течение нескольких лет, называется:

  • доминантным
  • гибридным
  • рецессивным
  • чистой линией

2. Устный ответ у доски

1. Охарактеризуйте роль открытия структуры нуклеиновых кислот для развития генетики.
2. Сопосотавьте роль наследственности и изменчивости организмов.

II. Изучение нового материала

1. Гибридологический метод изучения наследственности (рассказ учителя).
2. Моногибридное скрещивание (рассказ учителя).

III. Решение задач на моногибридное скрещивание

1. Основные этапы решения задач по генетике.

  1. Внимательно прочтите условие задачи.
  2. Сделайте краткую запись условия задачи.
  3. Запишите генотипы и фенотипы скрещиваемых особей.
  4. Определите и запишите типы гамет, которые образуют скрещиваемые особи.
  5. Определите и запишите генотипы и фенотипы получен­ного от скрещивания потомства.
  6. Проанализируйте результаты скрещивания. Для этого определите количество классов потомства по фенотипу и генотипу и запишите их в виде числового соотношения.
  7. Запишите ответ навопрос задачи.

2. Задача для отработки и закрепления навыков оформления решения.

Задача 1. У томата гладкая кожица плодов доминирует над опушенной. Гомозиготная форма с гладкими плодами скрещена с растением, имеющим опушенные плоды. В F1 получили 54 растения, в F2 – 736.

  1. Сколько типов гамет может образовывать растение с опушенными плодами?
  2. Сколько растений F1 могут быть гомозиготными?
  3. Сколько растений F2 могут иметь гладкие плоды?
  4. Сколько растений F2 могут иметь опушенные плоды?
  5. Сколько разных генотипов может образовываться в F2?

Объект: томат.
Признак: кожица плодов

1. Записываем схему скрещивания. В задаче сказано, что скрещивают гомозиготное растение с гладкими семенами, значит его генотип АА, опушенного растения – аа.

2. Записываем скрещивание потомков F1.

3. Проводим анализ скрещивания. В F2 произошло расщепление: по генотипу – 1 (АА) : 2 (Аа) : 1 (аа); по фенотипу 3 (желтосеменные растения) : 1 (зеленосеменные растения).

4. Отвечаем на вопросы задачи.

1) Растения с опушенными плодами дает один тип гамет, т. к. его генотип гомозигота по рецессивному признаку.
2) Все растения F1 гетерозиготны. Поэтому количество гомозиготных растений с опушенными плодами в F1 – 0.
3) В С – 736 растений. Растения с гладкими плодами имеют генотип АА и Аа. Они составляют 3/4 от общего количества растений – 736 : 4 * 3 = 552.
4) Растения с опушенными плодами составляют ? от общего числа в F2, т.е. 736 : 4 = 184.
5) В F2 произошло расщепление по генотипу в соотношении 1 : 2 : 1, т.е. в F2 3 разных генотипа.

Ответ: 1) 1; 2) 0; 3) 552; 4) 184; 5) 3.

Задача 2. Черный цвет щетины у свиней доминирует над рыжим. Какое потомство следует ожидать от скрещивания черной свиньи с генотипом FF и черного хряка с генотипом Ff?

Объект: свинья.
Признак: цвет щитины

Ответ: все потомство имеет черный цвет щетины.

Задача 3. Нормальный слух у человека обусловлен доминантным геном S, а наследственная глухонемота определяется рецессивным геном s. От брака глухонемой женщины с нормальным мужчиной родился глухонемой ребенок. Определите генотипы родителей.

Объект: человек.
Признак: слух

S – норма
s – глухонемота наследственная

Р глухонемая х норма
F1 глухонемой

У ребенка проявился рецессивный признак, значит его генотип ss. В генотип ребенка одна аллель пришла из материнского организма, а вторая – из отцовского. У матери по условию проявился рецессивный признак. Поэтому её генотип ss. У отца нормальный слух, значит одна аллель у него доминантная, а другая рецессивная, которую он передал ребенку.

Ответ: генотипы родителей ss и Ss.

Задача 4. От скрещивания комолого быка айширской породы с рогатым коровами в F1 получили 18 телят (все комолые), в F2 – 95. Каково количество комолых телят в F2?

Объект: корова.
Признак: наличие рогов

95 * 3/4 = 71,5 = 72 комолых телят

Ответ: 72 комолых телят в F2.

Домашнее задание: решение задач.

Задача 1. У человека фенилкетонурия наследуется как рецессивный признак. Определите вероятность развития заболевания у детей в семье, где оба родителя гетерозиготны по данному признаку.

Задача 2. У кроликов шерсть нормальной длины доминантна, короткая – рецессивна. У крольчихи с короткой шерстью родились 7 крольчат – 4 короткошерстных и 3 с нормальной шерстью. Определите генотип и фенотип отца.

Список использованной литературы:

1. Гончаров О.В. «Генетика. Задачи», Саратов, издательство «Лицей», 2005 г.
2. Лернер Г.И. «Биология. Тренировочные задания», М: «Эксмо», 2011 г.

По материалам xn--i1abbnckbmcl9fb.xn--p1ai

Среди заданий по генетике можно выделить 6 основных типов, встречающихся в ЕГЭ. Первые два (на определение числа типов гамет и моногибридное скрещивание) встречаются чаще всего в части А экзамена (вопросы А7 , А8 и А30 ).

Задачи типов 3 , 4 и 5 посвящены дигибридному скрещиванию, наследованию групп крови и признаков, сцепленных с полом. Такие задачи составляют большинство вопросов С6 в ЕГЭ .

Задания шестого типа представляют собой задачи смешанного типа. В них рассматривается наследование двух пар признаков: одна пара сцеплена с Х-хромосомой (или определяет группы крови человека), а гены второй пары признаков расположены в аутосомах. Этот класс задач считается самым трудным для абитуриентов.

Ниже изложены теоретические основы генетики, необходимые для успешной подготовки к заданию С6, а также рассмотрены решения задач всех типов и приведены примеры для самостоятельной работы.

Ген — это участок молекулы ДНК, несущий информацию о первичной структуре одного белка. Ген — это структурная и функциональная единица наследственности.

Аллельные гены (аллели) — разные варианты одного гена, кодирующие альтернативное проявление одного и того же признака. Альтернативные признаки — признаки, которые не могут быть в организме одновременно.

Гомозиготный организм — организм, не дающий расщепления по тем или иным признакам. Его аллельные гены одинаково влияют на развитие данного признака.

Гетерозиготный организм — организм, дающий расщепление по тем или иным признакам. Его аллельные гены по-разному влияют на развитие данного признака.

Доминантный ген отвечает за развитие признака, который проявляется у гетерозиготного организма.

Рецессивный ген отвечает за признак, развитие которого подавляется доминантным геном. Рецессивный признак проявляется у гомозиготного организма, содержащего два рецессивных гена.

Генотип — совокупность генов в диплоидном наборе организма. Совокупность генов в гаплоидном наборе хромосом называется геномом.

Фенотип — совокупность всех признаков организма.

Этот закон выведен на основании результатов моногибридного скрещивания. Для опытов было взято два сорта гороха, отличающихся друг от друга одной парой признаков — цветом семян: один сорт имел желтую окраску, второй — зеленую. Скрещивающиеся растения были гомозиготными.

Для записи результатов скрещивания Менделем была предложена следующая схема:

А — желтая окраска семян
а — зеленая окраска семян

Формулировка закона: при скрещивании организмов, различающихся по одной паре альтернативных признаков, первое поколение единообразно по фенотипу и генотипу.

Из семян, полученных при скрещивании гомозиготного растения с желтой окраской семян с растением с зеленой окраской семян, были выращены растения, и путем самоопыления было получено F2.

Формулировка закона: у потомства, полученного от скрещивания гибридов первого поколения, наблюдается расщепление по фенотипу в соотношении 3:1 , а по генотипу — 1:2:1 .

Этот закон был выведен на основании данных, полученных при дигибридном скрещивании. Мендель рассматривал наследование двух пар признаков у гороха: окраски и формы семян.

В качестве родительских форм Мендель использовал гомозиготные по обоим парам признаков растения: один сорт имел желтые семена с гладкой кожицей, другой — зеленые и морщинистые.

А — желтая окраска семян, а — зеленая окраска семян,
В — гладкая форма, в — морщинистая форма.

Затем Мендель из семян F1 вырастил растения и путем самоопыления получил гибриды второго поколения.

В F2 произошло расщепление на 4 фенотипических класса в соотношении 9:3:3:1 . 9/16 всех семян имели оба доминантных признака (желтые и гладкие), 3/16 — первый доминантный и второй рецессивный (желтые и морщинистые), 3/16 — первый рецессивный и второй доминантный (зеленые и гладкие), 1/16 — оба рецессивных признака (зеленые и морщинистые).

При анализе наследования каждой пары признаков получаются следующие результаты. В F2 12 частей желтых семян и 4 части зеленых семян, т.е. соотношение 3:1 . Точно такое же соотношение будет и по второй паре признаков (форме семян).

Формулировка закона: при скрещивании организмов, отличающихся друг от друга двумя и более парами альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всевозможных сочетаниях.

Третий закон Менделя выполняется только в том случае, если гены находятся в разных парах гомологичных хромосом.

При анализе признаков гибридов первого и второго поколений Мендель установил, что рецессивный ген не исчезает и не смешивается с доминантным. В F2 проявляются оба гена, что возможно только в том случае, если гибриды F1 образуют два типа гамет: одни несут доминантный ген, другие — рецессивный. Это явление и получило название гипотезы чистоты гамет: каждая гамета несет только один ген из каждой аллельной пары. Гипотеза чистоты гамет была доказана после изучения процессов, происходящих в мейозе.

Гипотеза «чистоты» гамет — это цитологическая основа первого и второго законов Менделя. С ее помощью можно объяснить расщепление по фенотипу и генотипу.

Этот метод был предложен Менделем для выяснения генотипов организмов с доминантным признаком, имеющих одинаковый фенотип. Для этого их скрещивали с гомозиготными рецессивными формами.

Если в результате скрещивания все поколение оказывалось одинаковым и похожим на анализируемый организм, то можно было сделать вывод: исходный организм является гомозиготным по изучаемому признаку.

Если в результате скрещивания в поколении наблюдалось расщепление в соотношении 1:1 , то исходный организм содержит гены в гетерозиготном состоянии.

Наследование групп крови в этой системе является примером множественного аллелизма (это существование у вида более двух аллелей одного гена). В человеческой популяции имеется три гена (i 0 , I А , I В ), кодирующие белки-антигены эритроцитов, которые определяют группы крови людей. В генотипе каждого человека содержится только два гена, определяющих его группу крови: первая группа i 0 i 0 ; вторая I А i 0 и I А I А ; третья I В I В и I В i 0 и четвертая I А I В .

У большинства организмов пол определяется во время оплодотворения и зависит от набора хромосом. Такой способ называют хромосомным определением пола. У организмов с таким типом определения пола есть аутосомы и половые хромосомы — Y и Х.

У млекопитающих (в т.ч. у человека) женский пол обладает набором половых хромосом ХХ, мужской пол — ХY. Женский пол называют гомогаметным (образует один тип гамет); а мужской — гетерогаметным (образует два типа гамет). У птиц и бабочек гомогаметным полом являются самцы (ХХ), а гетерогаметным — самки (ХY).

В ЕГЭ включены задачи только на признаки, сцепленные с Х-хромосомой. В основном они касаются двух признаков человека: свертываемость крови (Х Н — норма; X h — гемофилия), цветовое зрение (Х D — норма, X d — дальтонизм). Гораздо реже встречаются задачи на наследование признаков, сцепленных с полом, у птиц.

У человека женский пол может быть гомозиготным или гетерозиготным по отношению к этим генам. Рассмотрим возможные генетические наборы у женщины на примере гемофилии (аналогичная картина наблюдается при дальтонизме): Х Н Х Н — здорова; Х Н X h — здорова, но является носительницей; Х h Х h — больна. Мужской пол по этим генам является гомозиготным, т.к. Y-хромосома не имеет аллелей этих генов: Х Н Y — здоров; X h Y — болен. Поэтому чаще всего этими заболеваниями страдают мужчины, а женщины являются их носителями.

Определение числа типов гамет проводится по формуле: 2 n , где n — число пар генов в гетерозиготном состоянии. Например, у организма с генотипом ААввСС генов в гетерозиготном состоянии нет, т.е. n = 0 , следовательно, 2 0 = 1 , и он образует один тип гамет (АвС). У организма с генотипом АаВВсс одна пара генов в гетерозиготном состоянии (Аа), т.е. n = 1 , следовательно, 2 1 = 2 , и он образует два типа гамет. У организма с генотипом АаВвСс три пары генов в гетерозиготном состоянии, т.е. n = 3 , следовательно, 2 3 = 8 , и он образует восемь типов гамет.

Задача: Скрестили белых кроликов с черными кроликами (черный цвет — доминантный признак). В F1 — 50% белых и 50% черных. Определите генотипы родителей и потомства.

Решение: Поскольку в потомстве наблюдается расщепление по изучаемому признаку, следовательно, родитель с доминантным признаком гетерозиготен.

По материалам ege-study.ru

Добавить комментарий