Главная > Болезни > Железы не имеющие выводных протоков и выделяющие гормоны в кровь называются

Железы не имеющие выводных протоков и выделяющие гормоны в кровь называются

Физиологические функции организма регулируются не только нервной системой. Передача информации к органам организма от центральной нервной системы осуществляется и с помощью специальных веществ, которые выделяются органами, называемыми железами внутренней секреции. Свое влияние на железы внутренней секреции ЦНС оказывает непосредственно, через нервы, идущие к ним, и через гипоталамус. В гипоталамусе располагаются центр регуляции и специальные нейроны, продуцирующие посредники — либерины.

Железы внутренней секреции

Это специальные железистые органы, не имеющие выводных протоков и выделяющие свой секрет, называемый гормоном, непосредственно в кровь, которая протекает по пронизывающим ткань железы капиллярам. В организме различают следующие железы внутренней секреции: гипоталамус, гипофиз, эпифиз, щитовидная железа, околощитовидные железы, поджелудочная железа, надпочечники, яичники и семенники, желтое тело, плацента, вилочковая железа. Инкреторная деятельность свойственна также и многим органам организма, так как в них есть отдельные специальные клетки, инкретирующие биологически активные вещества типа гормонов. Совокупность этих эндокринных клеток образует диффузную эндокринную систему.

Каждая железа внутренней секреции синтезирует и выделяет в кровь свои специфические гормоны, которые разносятся по организму, поступают к органам и осуществляют свое действие — усиление или угнетение функции, пролиферации, дифференциации, обмена веществ и энергии. Для обеспечения приспособительного эффекта нужна определенная, оптимальная на данный момент концентрация гормона в крови. Определенная концентрация гормонов в крови поддерживается благодаря информации, поступающей с рецепторов сосудов и тканей по каналам обратной связи в центр регуляции деятельности желез внутренней секреции, расположенный в гипоталамусе.

Специальные рецепторы воспринимают меньшие и большие концентрации гормона, информация поступает в гипоталамус, здесь формируется программа действия. Она к одним железам поступает по эфферентным нервным волокнам, к другим — с участием нейросекретов: либеринов или статинов, которые через местную кровеносную систему поступают в гипофиз, здесь образуются тропные гормоны, поступающие в общий кровоток к соответствующим железам, где и вызывают приспособление скорости синтеза и выделения гормона согласно потребностям. Складывающиеся на определенный период фактические оптимальные концентрации отдельных гормонов в крови животного называются гормональным статусом.

Это органические соединения, обладающие высокой биологической активностью. Их вырабатывают секреторные клетки. Хранятся они в гранулах — внутриклеточных органеллах, отделенных от цитоплазмы мембраной. В гранулах содержится большое количество молекул гормона, погруженных в белковый матрикс. По химическому строению различают гормоны белковопроизводные и стероидные производные холестерина). Например, к стероидным относят все гормоны коры надпочечников и половых желез, к простым белкам — инсулин, гормон роста и др., к сложным белкам — фолликулостимулирующий, лютеинизирующий и тиреотропный гормоны, производные аминокислоты тирозина — адреналин, норадреналин, тироксин, трийодтиронин.

Гормоны обладают рядом специфических свойств:

1) действуют только на определенный орган;

2) действуют на больших расстояниях от места образования;

3) обладают высокой биологической активностью;

4) оказывают свое действие через белки-ферменты, рецепторы мембран;

5) не имеют видовой специфичности;

6) быстро разрушаются специальными ферментами.

Достигнув рецептора и взаимодействуя с ним, БГ вызывает его трансформацию, что приводит к активации аденилатциклазы, которая катализирует дефосфорилирование АТФ с образованием цАМФ. Она вызывает в клетке разнообразные эффекты — активирование протеинкина и др., что приводит к изменению функции клетки.

Механизм действия гормонов

Гормон с кровью поступает к органу-мишени. Клетки органа-мишени имеют специальные рецепторы, которые возбуждаются только определенным гормоном. Одна и та же клетка может иметь рецепторы трех видов: локализованные на поверхности мембраны клетки, в цитозоле и в ядре клетки. Кроме того, в одной и той же клетке могут присутствовать разные рецепторы одного вида. Специфические Рецепторы клеток-мишеней способны считывать информацию, закодированную в гормоне. При взаимодействии гормона с рецептором образуется гормон-рецепторный комплекс. Существует два механизма действия гормонов, принципиально различающихся по признаку того, где образуется гормон-рецепторный комплекс — на поверхности клетки или внутри нее.

Первый механизм действия гормонов. Для большинства белковых гормонов рецепторы находятся на наружной поверхности клеток органов-мишеней. Гормон присоединяется к рецептору, меняя конформацию белка, при этом внутрь клетки органа передается сигнал. Он активирует фермент аденилатциклазу, которая катализирует дефосфорилирование АТФ с образованием циклической АМФ. цАМФ является уже посредником действия гормона на обменные процессы и вызывает в клетке разнообразные эффекты — активирование протеинкиназ и др., в результате повышается или понижается тот или иной обмен.


Рис.1. Схема взаимодействия белкового гормона (БГ) с рецептором, локализованном на плазматической мембране

Второй механизм действия гормонов. Стероидные гормоны, а также тиреоидные и другие производные аминокислот легко проникают в клетку через ее мембрану. Стероидные гормоны взаимодействуют с рецепторами, находящимися в цитоплазме. Образовавшийся гормон-рецепторный комплекс переносится в ядро и действует непосредственно на геном, стимулируя или угнетая его активность, т.е. влияет на синтез ДНК, изменяя скорость транскрипции и количество информационной РНК. Увеличение или уменьшение количества мРНК влияет на синтез белка в процессе трансляции, что приводит к изменению функциональной активности клетки.


Рис.2. Схема взаимодействия стероидных гормонов (СГ) с внутриклеточным рецептором

Гормон диффундирует через плазматическую мембрану и взаимодействует с рецептором, находящимся в цитоплазме. Гормон-рецепторный (Г-Р) комплекс переносится в ядро и действует непосредственно на геном, стимулируя или угнетая его активность, т. е. действует на синтез ДНК. изменяя скорость транскрипции и количество информационной (матричной) РНК (мРНК). Увеличение или уменьшение количества мРНК влияет на синтез белка в процессе трансляции, что приводит к изменению функциональной активности клетки.


Рис.3. Схема взаимодействия тиреоидных гормонов (ТГ) с рецептором, локализованном в ядре

Тиреоидные гормоны из цитоплазмы проникают в ядро клетки, где взаимодействуют с рецепторами, образуя активный гормон-рецепторный комплекс. Он действует непосредственно на геном, стимулируя или угнетая его активность, изменяя скорость транскрипции и количество мРНК. Увеличение или уменьшение количества мРНК влияет на синтез белка в процессе трансляции и приводит к изменению функциональной активности клетки.

Таким образом, специфическое действие гормона проявляется лишь после его комплексирования с соответствующим рецептором. В результате процессов по распознаванию, комплексированию и активированию рецептора последний генерирует ряд вторичных мессенджеров, которые вызывают последовательную цепь пострецепторных взаимодействий, заканчивающихся проявлением специфического биологического эффекта гормона. Отсюда следует, что биологическое действие гормона зависит не только от его содержания в крови, но и от количества и функционального состояния рецепторов, а также от уровня функционирования пострецепторного механизма.

Количество клеточных рецепторов, как и других компонентов клетки, постоянно изменяется, отражая процессы их синтеза и деградации. Основная роль в регуляции количества рецепторов принадлежит гормонам. Имеется обратная зависимость между уровнем гормонов в межклеточной жидкости и количеством рецепторов. Так, например, концентрация гормона в крови и межклеточной жидкости очень низкая и составляет 1014-109 М, что значительно ниже, чем концентрация аминокислот и других различных пептидов (105-103 М). Количество рецепторов выше и составляет 1010-108 М, причем на плазматической мембране их около 1014-1010 М, а внутриклеточный уровень вторичных мессенджеров несколько выше – 108-106 М. Абсолютное количество рецепторных мест на мембране клетки составляет от нескольких сотен до 100 000.

Многочисленные исследования показали, что рецепторы обладают характерным свойством усиливать действие гормона не только описанными механизмами, но и посредством так называемого “нелинейного связывания”. Характерна еще одна особенность, которая заключается в том, что наибольший гормональный эффект не означает наибольшего связывания гормона рецепторами. Так, например, максимальная стимуляция инсулином транспорта глюкозы в адипоциты наблюдается при связывании гормоном лишь 2% инсулиновых рецепторов. Такие же взаимоотношения установлены для АКТГ, гонадотропинов и других гормонов. Это объясняется двумя феноменами: ”нелинейным связыванием” и наличием так называемых “резервных рецепторов”. Так или иначе, но амплификация, или усиление действия гормона, являющееся следствием этих двух феноменов, выполняет важную физиологическую роль в процессах биологического действия гормона в норме и при различных патологических состояниях.

Так, например, при гиперинсулинизме и ожирении на 50-60% снижается количество инсулиновых рецепторов, локализованных на гепатоцитах, адипоцитах, тимоцитах, моноцитах, и, наоборот, инсулиндефицитные состояния у животных сопровождаются увеличением количества рецепторов к инсулину. Наряду с количеством рецепторов к инсулину изменяется и их аффинность, т.е. способность комплексироваться с инсулином, а также изменяется трансдукция (передача) гормонального сигнала внутри рецептора. Таким образом, изменение чувствительности органов и тканей к гормонам осуществляется посредством механизмов обратной связи (down regulation). Для состояний, сопровождающихся высокой концентрацией гормона в крови, характерно уменьшение количества рецепторов, что клинически проявляется в виде резистентности к данному гормону.

Некоторые гормоны могут влиять на количество не только “собственных” рецепторов, но и рецепторов к другому гормону. Так, прогестерон уменьшает, а эстрогены увеличивают количество рецепторов одновременно и к эстрогенам, и к прогестерону. Снижение чувствительности к гормону может быть обусловлено следующими механизмами: 1) уменьшением аффинности рецептора вследствие влияния других гормонов и гормонорецепторных комплексов; 2) снижением количества функционирующих рецепторов в результате их интернализации или высвобождения из мембраны во внеклеточное пространство; 3) инактивацией рецептора вследствие конформационных изменений; 4) разрушением рецепторов путем повышения активности протеаз или деградацией гормоно-рецепторного комплекса под влиянием ферментов лизосом; 5) угнетением синтеза новых рецепторов.

Для каждого вида гормонов имеются агонисты и антагонисты. Последние представляют собой вещества, которые способны конкурентно связывать рецептор к гормону, снижая или полностью блокируя его биологический эффект. Агонисты, наоборот, комплексируясь с соответствующим рецептором, усиливают действие гормона или полностью имитируют его присутствие, причем иногда период полураспада агониста в сотни и более раз превышает время деградации естественного гормона, а, следовательно, в течение этого времени проявляется биологический эффект, что естественно используется в клинических целях. Так, например, агонистами глюкокортикоидов являются дексаметазон, кортикостерон, альдостерон, а частичными агонистами – 11b-гидроксипрогестерон, 17a-гидроксипрогестерон, прогестерон, 21-деоксикортизол, а их антагонистами – тестостерон, 19-нортестостерон, 17-эстрадиол. К неактивным стероидам в отношении рецепторов к глюкокортикоидам относятся 11a-гидроксипрогестерон, тетрагидрокортизол, андростендион, 11a-, 17a-метилтестостерон. Эти взаимоотношения учитывают не только в эксперименте при уточнении действия гормонов, но и в клинической практике.

Читайте также:  Профилактика шейного остеохондроза: 6 эффективных приемов

По материалам biofile.ru

Эндокринная система человека является фундаментом, на котором основана практически вся жизненно важная деятельность организма и его биохимические реакции. Основные функции, выполняемые гуморальной системой, — рост и развитие человека, регуляция эмоционального и психического состояния, репродуктивная функция, участие в обменных процессах и др. Существуют железы внутренней, внешней и смешанной секреции.

Нервная регуляция деятельности эндокринных желез — это сложный многоступенчатый механизм. Осуществляется он посредством так называемой «обратной связи». Ее принцип заключается в том, что орган — мишень для какого-либо гормона посылает сигналы в высшие центры регуляции эндокринной системы (гипоталамус и гипофиз, находящиеся в головном мозге и осуществляющие нейроэндокринную регуляцию), и, в ответ на это, в нужной дозе (учитывая потребности органа в данный момент) выделяется гормон.

Когда гормон поступает к конечному пункту назначения, орган-мишень посылает сигнал обратно в головной мозг, и секреция прекращается. Эта система предотвращает гиперсекрецию веществ либо гиперреактивность органа-мишени. В организме человека существуют три основных вида желез:

  1. 1. Внутренней секреции — эндокринные (не имеют выводных протоков и выделяют гормоны непосредственно в кровь и лимфу).
  2. 2. Внешней секреции — экзокринные (имеют выводные протоки на поверхность тела или в полости организма).
  3. 3. Смешанной секреции (выводящие гормоны как в кровь и лимфу, так и в полости организма).

Таблица представителей третьей группы:

Тип секреции

Список продуцируемых веществ и клеток

Инсулин + глюкагон — внутренняя секреция; ферменты и панкреатический сок — внешняя секреция

Сперматозоиды — внешняя секреция; андрогены- внутренняя секреция

Яйцеклетки — внешняя секреция; эстрогены и прогестины — внутренняя секреция

К железам внутренней секреции относятся щитовидная, паращитовидная, надпочечники, гипофиз, тимус. Данные железы не имеют выводных протоков во внешнюю среду и в полости организма, а вещества, вырабатываемые ими, попадают сразу в кровь или лимфу.

Гипофиз — это центральный орган эндокринной системы. Вместе с гипоталамусом осуществляют нейроэндокринную регуляцию желез с внутренней и смешанной секрецией. Располагается в головной мозге.

Щитовидная железа — орган внутренней секреции организма, который регулирует все обменные процессы. Гормоны, выделяемые ей, делятся на 2 типа: йодтиронины (тироксин Т3 и трийодтиронин Т4) и кальцитонин.

Т3 и Т4 — важнейшие гормоны, которые регулируют основной обмен веществ человека (то есть уровень энергетических затрат, необходимый для нормальной жизнедеятельности организма в состоянии полного покоя). Кальцитонин участвует в регуляции обмена кальция и в развитии костной ткани.

На задней поверхности щитовидной железы находятся 2-4 пары маленьких паращитовидных желез. От нормального их функционирования в организме зависит многое, в частности, вырабатываемый ими паратгормон регулирует уровень кальция и оказывает влияние костную ткань и почки.

Надпочечники продуцируют адреналин и норадреналин. Эти два гормона повышают артериальное давление, учащают частоту и силу сердечных сокращений, расширяют просвет бронхов, участвуют в регуляции углеводного обмена (одна из функций — увеличение уровня сахара в крови). Эти вещества также называют “гормонами стресса”, так как при эмоциональном напряжении их уровень резко повышается, и они участвуют во временной адаптационной реакции организма на стресс.

К железам внешней секреции относят потовые, сальные, слезные, слюнные, железы желудка и кишечника.

Печень — это жизненно важный орган человека, который участвует в процессах пищеварения, детоксикации, в кроветворении, является депо гликогена и витаминов и др. Одной из функций является гормоносинтезирующая. Печень производит следующие гормоны:

  • инсулиноподобный фактор роста-1 (отвечает за мышечно-костный рост);
  • ангиотензин (контролирует уровень артериального давления);
  • тромбопоэтин (регулирует образование тромбоцитов);
  • гепсидин (контролирует обмен железа в организме). Основная его задача — увеличивать запасы элемента в клетках.

Классически печень не относят к железам смешанной секреции, так как кроме экзокринной и эндокринной функции она выполняет и другие жизненно важные задачи в организме человека.

Поджелудочная железа и печень

Поджелудочная железа, семенники и яичники — являются непосредственными примерами желез с эндокринным и экзокринным выделением секретов.

Поджелудочная железа выполняет две функции. Первая — это гуморальная регуляция уровня глюкозы в крови и переваривание пищи при помощи ферментов. Внешнесекреторная функция осуществляется ацинусами, являющимися структурными единицами этого органа. Они выделяют большое количество пищеварительных ферментов, таких как трипсин, химотрипсин, липаза, амилаза и др.

Внутрисекреторная функция выполняется так называемыми островками Лангерганса, в которых производятся два основных гормона — инсулин и глюкагон. На их синтез влияет концентрация глюкозы. Первый снижает сахара при высоком содержании их в крови, второй, — наоборот, повышает их, когда концентрация падает.

Чтобы инсулин выделился в нормальном количестве, необходимы следующие условия:

  • рост глюкозы в крови;
  • потребление должного количества пищи;
  • аминокислоты.

Главная функция инсулина — поддержание нормального уровня глюкозы в крови и утилизация ее избытков. К основным функциям глюкагона относится влияние на рост глюкозы в сыворотке крови. При нарушениях его выработки, снижении рецепторной чувствительности клеток к инсулину, а также при заболеваниях поджелудочной железы может возникнуть сахарный диабет.

По определению уровня глюкозы в крови можно судить о нормальной выработке инсулина и глюкагона.

Семенники — мужские половые железы. В этих органах осуществляется сперматогенез и образование мужских половых гормонов (андрогенов). Основным представителем является тестостостерон.

Под его влиянием происходит развитие первичных и вторичных половых признаков — рост половых органов, оволосение по мужскому типу, понижение голоса, особенности формирования костно-мышечной системы и др.

Яичники — женские половые железы. В них происходит выработка яйцеклеток и выделение женских половых гормонов — эстрогенов и прогестерона.

Под их влиянием происходит развитие женских половых признаков — рост и увеличение молочных желез, оволосение по женскому типу, рост матки, яичников, влагалища, особенности формирования скелета. Также эстрогены контролируют образование жировых запасов и распределение их в организме женщины. Прогестерон подготавливает матку к имплантации зародыша.

По материалам hormonus.com

Железа – орган, функцией которого является производство какого-либо вещества, играющего важную роль в организме.

Вещество может выделяться в качестве секрета наружу либо в качестве гормона прямо в систему кровообращения.

Железы бывают двух видов: экзогенные (железы внешней секреции) и эндогенные (железы внутренней секреции).

Экзогенные – это железы, имеющие выводные протоки и выделяющие свои секреты на поверхность тела или в полости тела. Секреты желез внешней секреции называются ферментами.

Железы внешней секреции можно разделить на три группы:

Выводные протоки, выходят на поверхность тела (потовые, сальные, слезные, половые);

Выводные протоки, открываются в полости тела (слюнные железы, печень, поджелудочная железа, железы желудка, железы кишечника).

Смешанные железы, одновременно являющиеся железами внутренней секреции (половые железы, почки, поджелудочная железа, железы желудка, железы двенадцатиперстной кишки).

Эндогенные – это железы, не имеющие выводных протоков и выделяющие вырабатываемые ими гормоны непосредственно в кровь или лимфу. К этим железам относятся гипофиз, эпифиз, щитовидная железа, вилочковая железа, паращитовидные железы, надпочечники, половые железы.

Продуктами жизнедеятельности желез внутренней секреции являются гормоны.

Гормоны обладают высокой биологической активностью, специфичностью действия, влияют на жизнедеятельность органов, расположенных вдали от места их образования. Они сравнительно быстро разрушаются, поэтому должны выделяться в кровь постоянно.

Гормоны оказывают влияние на обмен веществ путем стимулирования, замедления или блокирования тех ли иных ферментов.

Одни гормоны оказывают непосредственное регуляторное действие на какой-то орган, а другие могут обладать программируемым эффектом, т. е. в определенный момент жизни организма изменять клетки каких-либо тканей на все последующее время жизни.

Например, в период полового созревания целый ряд клеток меняют под действием гормонов свою форму и функции и остаются такими на все дальнейшее время своего существования.

В результате осуществляется гормональная регуляция функций и деятельности органов.

По химической природе гормоны делятся на три группы: полипептиды и белки (инсулин), аминокислоты и их производные (тироксин, адреналин) и стероиды (половые гормоны).

— обеспечивают рост и развитие организма;

— обеспечивают адаптацию организма к постоянным изменениям;

— контролируют процессы обмена веществ.

Эндокринная регуляция жизнедеятельности организма является комплексной и строго сбалансированной системой.

1. Колесов Д.В., Маш Р.Д., Беляев И.Н. Биология 8 М.:Дрофа

2. Пасечник В.В., Каменский А.А., Швецов Г.Г. / Под ред. Пасечника В.В. Биология 8 М.:Дрофа.

3. Драгомилов А.Г., Маш Р.Д. Биология 8 М.: ВЕНТАНА-ГРАФ

По материалам helperia.ru

Железы – это органы, обладающие способностью синтезировать и выделять особые биологически активные вещества. Они называются секретами, а сама функция – секреторной.

В организме человека огромное количество различных желез, однако большинство из них микроскопические и лишь немногие имеют относительно крупные размеры. Микроскопические железы в стенках трубчатых органов пищеварительной, дыхательной, мочевой и половой систем вырабатывают слизь, которая увлажняет и защищает стенки полости, именно поэтому внутренняя оболочка трубчатых органов носит название слизистой. Одноклеточные железы (бокаловидные клетки), входящие в состав эпителия желудочно-кишечного тракта, и другие мелкие пищеварительные железы вырабатывают ферменты, необходимые для переваривания пищи. Многочисленные мелкие железы в коже – это потовые и сальные железы. С потом и кожным салом из организма выводятся вредные, ненужные соединения.

В тех случаях, когда организму для осуществления функций требуется большое количество специального вещества (секрета), его выработкой занимаются сложно устроенные крупные железы, обособленные от других органов. Такими железами являются, например, женская молочная железа, поджелудочная железа, слезная, большие слюнные железы и др.

Все многоклеточные железы имеют сходное строение: состоят из скопления «рабочих» клеток, специализирующихся на выделении различных веществ (так называемая паренхима), и опорных клеток, образующих каркас, или строму, железы. Строма придает железе форму, в ней проходят нервы и сосуды, доставляющие «строительный материал» рабочим клеткам. В зависимости от происхождения, характера вырабатываемого секрета, наличия выводных протоков железы разделяют на группы.

Большинство желез имеет выводные протоки, по которым секрет попадает на поверхность тела или слизистых оболочек. Такие железы называются экзокринными (экзо – «наружу», крино – «выделяю»), или железами внешней секреции. К ним относятся все железы кожи, слезные, слюнные железы, печень и др. Железы, которые не имеют выводных протоков и выделяют секреты (гормоны) непосредственно в кровь, называются эндокринными (эндо – «внутрь»), или железами внутренней секреции. Гормоны являются высокоактивными веществами, которые в очень небольших количествах способны влиять на различные функции организма. К железам внутренней секреции относятся гипофиз, эпифиз, надпочечники, щитовидная, паращитовидные и вилочковая (тимус) железы. Половые железы (яичник и яичко) и поджелудочная железа относятся к железам смешанной секреции, т.к. обладают и экзокринной, и эндокринной функцией.

Внутри железы клетки паренхимы группируются в участки определенной формы, в зависимости от которой различают железы альвеолярные, трубчатые и альвеолярно-трубчатые. Они могут быть простыми или разветвленными. Например, альвеолярные железы могут состоять из одного пузырька, или альвеолы (простая альвеолярная железа), нескольких альвеол (разветвленная альвеолярная) или из большого количества альвеол, образующих грозди (сложная альвеолярная). В трубчатых железах основным структурным компонентом является трубочка, в альвеолярно-трубчатых – одновременно пузырек и трубочка. Как правило, крупные железы имеют сложное альвеолярно-трубчатое строение, что позволяет им вырабатывать большой объем секрета.

Слюнные железы, протоки которых открываются в полость рта, относятся к пищеварительным железам и вырабатывают вещества, необходимые для переваривания пищи. Малые слюнные железы разбросаны по всей слизистой оболочке языка и ротовой полости: они имеются на губах, щеках, небе, деснах. Эти железы постоянно вырабатывают небольшое количество слюны, увлажняющей слизистую оболочку рта. Больших слюнных желез три пары: околоушная, поднижнечелюстная и подъязычная (рис. 1). Они располагаются за пределами ротовой полости, но их протоки в нее открываются.

Околоушная железа, самая крупная, имеет массу около 30 г и расположена на боковой поверхности лица спереди и ниже ушной раковины. Выводной проток околоушной железы идет под кожей поперек щеки, затем прободает щечную мышцу и открывается на внутренней поверхности щеки на уровне второго верхнего большого коренного зуба. Поднижнечелюстная железа весит 15 г и находится под кожей в области дна ротовой полости (в так называемом поднижнечелюстном треугольнике). Ее выводной проток открывается в полость рта на подъязычном сосочке сбоку от уздечки языка. Подъязычная железа (масса – около 5 г) расположена в складке слизистой оболочки на дне ротовой полости. Главный проток подъязычной железы открывается вместе с протоком поднижнечелюстной железы на подъязычном сосочке, а несколько мелких протоков имеют отверстия вдоль подъязычной складки слизистой оболочки.

Большие слюнные железы имеют дольчатое строение. Каждая долька альвеолярно-трубчатая. Соединяясь друг с другом, трубочки формируют систему выносящих протоков, которые сливаются в общий выводной проток. У новорожденных детей слюнные железы развиты слабо, их быстрый рост происходит в период от 4 месяцев до 2 лет. Увеличение больших слюнных желез в размерах наблюдается до 25–30 лет, а после 55–60 лет они уменьшаются.

За сутки малые и большие слюнные железы выделяют от 0,5 до 2 л слюны, состоящей преимущественно из воды (до 99,5%), солей, ферментов амилазы и некоторых других, слизи, бактерицидного вещества лизоцима и иммуноглобулинов. Основная функция слюны – смачивание пищи и начало ее переваривания. Под действием ферментов слюны в полости рта начинается расщепление углеводов. Слизь, содержащаяся в слюне, облегчает глотание. Лизоцим* дезинфицирует полость рта. Слюна обеспечивает растворение пищевых веществ и поступление их молекул для анализа во вкусовые почки языка. Состав слюны различается в зависимости от продуцирующих ее желез. Околоушная железа и малые железы языка секретируют жидкую слюну, богатую ферментами. Железы, расположенные на корне языка и небе, вырабатывают слизистый секрет, богатый муцином. Поднижнечелюстная и подъязычная железы, малые железы губ и щек продуцируют смешанную слюну. Ферментный состав и свойства слюны изменяются с возрастом человека, зависят от режима питания и вида пищи.

Слюноотделение является рефлекторным актом и увеличивается уже при виде пищи, в ответ на ее запах и даже при мыслях о еде. Качество пищи влияет на количество и свойства слюны: чем пища тверже и суше, тем больше слюны выделяется. Исследование рефлекторной функции слюноотделения у собак великим русским ученым И.П. Павловым легло в основу созданного им научного направления – физиологии высшей нервной деятельности. И.П. Павлов вырабатывал у собак условный рефлекс, сначала сочетая выдачу корма со звуковым или зрительным сигналом, а затем наблюдая выработку слюны в ответ на сигнал без предъявления пищи. В основе условного рефлекса лежит образование нервных связей между центрами головного мозга.

Центр слюноотделения располагается в продолговатом мозге. Именно в этот центр приходит сигнал от рецепторов в полости рта, когда пища попадает на язык. Сюда же, еще до попадания пищи в рот, по нервным связям поступают сигналы от обонятельного, зрительного и даже слухового центров, несущие информацию о запахе, виде и просто названии пищи. Поэтому слюноотделение начинается заранее, естественно, если предшествующий опыт уже выработал у человека соответствующий условный рефлекс. От слюноотделительного центра команда на выработку слюны передается железам по вегетативным нервам, при этом парасимпатические нервы стимулируют выделение большого количества слюны, а симпатические уменьшают слюноотделение и сгущают слюну. Торможение слюноотделения, приводящее к сухости во рту, может быть обусловлено болью, отрицательными эмоциями, умственным напряжением. Наоборот, обильное слюноотделение вызывают ядовитые вещества, удушье.

Вид пищи и начало ее обработки в полости рта рефлекторно стимулируют отделение желудочного сока. Поэтому так важно правильно организовать питание, соблюдая все «ритуалы», предшествующие приему пищи, и обращая внимание на качество и привлекательность потребляемых продуктов.

Относится к защищающим глаз органам и входит в состав слезного аппарата. По строению является альвеолярно-трубчатой железой. Располагается слезная железа у верхне-наружного края глазницы (рис. 2). Короткие выводные протоки слезной железы (10–12) открываются в так называемый конъюнктивальный мешок, образованный тонкой прозрачной оболочкой (конъюнктива), которая покрывает наружную поверхность глазного яблока и переходит на внутреннюю поверхность век. Стекая сверху к внутреннему углу глаза (к носу), слезы увлажняют конъюнктиву, смывают пылевые частицы и обезвреживают микроорганизмы. Без слез конъюнктива и роговица могут высохнуть – преломляющая способность роговицы нарушится. Из внутреннего угла глаза (слезное озеро) слезы по двум слезным канальцам оттекают в слезный мешок, нижний конец которого переходит в носослезный проток, открывающийся в полость носа. Поэтому слезы в конечном счете попадают в полость носа, увлажняя его слизистую оболочку, а при обильном слезотечении человек начинает сморкаться.

Ежедневно слезные железы вырабатывают до 10 мл слезы. Эта жидкость имеет слабощелочную реакцию, состоит в основном из воды и содержит около 1,5% хлористого натрия, 0,5% белка альбумина, лизоцим и слизь. Благодаря наличию лизоцима слезы обладают бактерицидными свойствами. Со слезами из организма выделяются вещества, которые образуются при нервном напряжении или стрессе.

Слезоотделение происходит непрерывно, прекращаясь во время сна. Это рефлекторный процесс. Мигательные движения век способствуют оттоку слезной жидкости. Секреция слезных желез усиливается при механическом раздражении роговицы, при эмоциональном возбуждении (гнев, боль, радость). Гормон гипофиза пролактин, имеющий важное значение для женского организма, способствует выработке и выделению слез, поэтому женщины плачут чаще мужчин.

На примере слюнных и слезных желез вы познакомились со строением и работой большой группы органов – желез внешней секреции. Они вырабатывают и выделяют по протокам вещества, имеющие значение для нормального функционирования организма человека.

Околоушная железа, самая крупная, имеет массу около 30 г. Поднижнечелюстная
железа весит 15 г. Подъязычная железа имеет массу около 5 г. Ежедневно слезные
железы вырабатывают до 10 мл слезы. За сутки малые и большие слюнные железы
выделяют от 0,5 до 2 л слюны. У новорожденных детей слюнные железы развиты
слабо, их быстрый рост происходит в период от 4 месяцев до 2 лет.
Увеличение больших слюнных желез в размерах наблюдается
до 25–30 лет, а после 55–60 лет они уменьшаются.

Автор: Ольга Гурова, кандидат биологических наук, старший научный сотрудник, доцент кафедры анатомии человека РУДН

*Большая концентрация лизоцима в слюне собак позволяет им с таким успехом зализывать раны.

По материалам www.medweb.ru

Добавить комментарий